Science in China Series C: Life Sciences

, Volume 52, Issue 3, pp 224–231

New insight into the role of miRNAs in leukemia

Special Topic

Abstract

Recent studies have shown that microRNAs(miRNAs) play an important role in cell differentiation, growth, and death, including the functional study of miRNAs in tumorigenesis. To date, miRNA expression profiles in many types of cancers have been identified and miRNA expression signatures associated with types and cytogenetics of leukemia have also been reported. Increasing evidence has shown that miRNAs could function as either tumor suppressors or oncogenes in cancers such as leukemia, while other miRNAs might be benefitcial for diagnosis and prognosis, predicted to be newly developed biomarkers. In this review, we summarize the recent progress about miRNAs in leukemia and present a miRNA-mediated network involved in differentiation, proliferation and apoptosis predicted to be the roles of miRNAs in the pathogenesis of leukemia.

Keywords

miRNA leukemia regulation network clinical implication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297 14744438, 10.1016/S0092-8674(04)00045-5, 1:CAS:528:DC%2BD2cXhtVals7o%3DCrossRefPubMedGoogle Scholar
  2. 2.
    Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 2005, 33(4): 1290–1297 15741182, 10.1093/nar/gki200, 1:CAS:528:DC%2BD2MXit1Knu7s%3DCrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99(24): 15524–15529 12434020, 10.1073/pnas.242606799, 1:CAS:528:DC%2BD3sXjvVOlCrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA, 2004, 101(9): 2999–3004 14973191, 10.1073/pnas.0307323101, 1:CAS:528:DC%2BD2cXitlWhtr8%3DCrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Chen C Z. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med, 2005, 353(17): 1768–1771 16251533, 10.1056/NEJMp058190, 1:CAS:528:DC%2BD2MXhtFKrtLjKCrossRefPubMedGoogle Scholar
  6. 6.
    ESQUELA-KERSCHER A, SLACK, F J. Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer, 2006, 6(4): 259–269 16557279, 10.1038/nrc1840, 1:CAS:528:DC%2BD28XivVyqtrs%3DCrossRefPubMedGoogle Scholar
  7. 7.
    Lightfoot T. Aetiology of childhood leukemia. Bioelectromagnetics, 2005, (Suppl 7): S5–S11Google Scholar
  8. 8.
    Calin G A, Liu C G, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA, 2004, 101(32): 11755–11760 15284443, 10.1073/pnas.0404432101, 1:CAS:528:DC%2BD2cXntVersro%3DCrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Calin G A, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 2005, 353(17): 1793–1801 16251535, 10.1056/NEJMoa050995, 1:CAS:528:DC%2BD2MXhtFKrtLbJCrossRefPubMedGoogle Scholar
  10. 10.
    Garzon R, Volinia S, Liu C G, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood, 2008, 111(6): 3183–3189 18187662, 10.1182/blood-2007-07-098749, 1:CAS:528:DC%2BD1cXjvVamtbY%3DCrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Garzon R, Garofalo M, Martelli M P, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA, 2008, 105(10): 3945–3950 18308931, 10.1073/pnas.0800135105, 1:CAS:528:DC%2BD1cXjs1OgtLw%3DCrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Jonqen-Lavrencic M, Sun S M, Dijkstra M K, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood, 2008, 111(10): 5078–5085 10.1182/blood-2008-01-133355, 1:CAS:528:DC%2BD1cXmtlahsrg%3DCrossRefGoogle Scholar
  13. 13.
    Navarro F, Gaya A, Martinez A, et al. MicroRNA expression profiling in classical Hodgkin lymphoma. Blood, 2008, 111(5): 2825–2832 18089852, 10.1182/blood-2007-06-096784, 1:CAS:528:DC%2BD1cXivFakuro%3DCrossRefPubMedGoogle Scholar
  14. 14.
    Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043): 834–838 15944708, 10.1038/nature03702, 1:CAS:528:DC%2BD2MXkvVGgsLc%3DCrossRefPubMedGoogle Scholar
  15. 15.
    Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA, 2007, 104(50): 19971–19976 18056805, 10.1073/pnas.0709313104, 1:CAS:528:DC%2BD1cXhs1Wmtw%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Marcucci G, Radmacher M D, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med, 2008, 358(18): 1919–1928 18450603, 10.1056/NEJMoa074256, 1:CAS:528:DC%2BD1cXlt1Gnsr0%3DCrossRefPubMedGoogle Scholar
  17. 17.
    Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene, 2007, 26(28): 4148–4157 17260024, 10.1038/sj.onc.1210186, 1:CAS:528:DC%2BD2sXms1Sksbs%3DCrossRefPubMedGoogle Scholar
  18. 18.
    Fazi F, Rosa A, Fatica A, et al. A mini-circuitry comprising microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell, 2005, 123(5): 819–831 16325577, 10.1016/j.cell.2005.09.023, 1:CAS:528:DC%2BD2MXhtlWntLjLCrossRefPubMedGoogle Scholar
  19. 19.
    Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood, 2007, 109(10): 4399–4405 17284533, 10.1182/blood-2006-09-045104, 1:CAS:528:DC%2BD2sXls1amsLo%3DCrossRefPubMedGoogle Scholar
  20. 20.
    Gilliland D G, Tallman M S. Focus on acute leukemias. Cancer Cell, 2002, 1(5): 417–420 12124171, 10.1016/S1535-6108(02)00081-8, 1:CAS:528:DC%2BD38XltVKjsLY%3DCrossRefPubMedGoogle Scholar
  21. 21.
    Downing J R, Shannon K M. Acute leukemia: a pediatric perspective. Cancer Cell, 2002, 2(6): 437–445 12498712, 10.1016/S1535-6108(02)00211-8, 1:CAS:528:DC%2BD3sXht1ylsg%3D%3DCrossRefPubMedGoogle Scholar
  22. 22.
    Nelson P T, Baldwin D A, Scearce L M, et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods, 2004, 1(2): 155–161 15782179, 10.1038/nmeth717, 1:CAS:528:DC%2BD2MXisVGhu7k%3DCrossRefPubMedGoogle Scholar
  23. 23.
    Zanette D L, Rivadavia F, Molfetta G A, et al. MiRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res, 2007, 40(11): 1435–1440 17934639, 1:CAS:528:DC%2BD1cXivFyrs70%3DCrossRefPubMedGoogle Scholar
  24. 24.
    Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood, 2007, 109(11): 4944–4951 17327404, 10.1182/blood-2006-12-062398, 1:CAS:528:DC%2BD2sXmt1Onsr4%3DCrossRefPubMedGoogle Scholar
  25. 25.
    Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia, 2007, 21(5): 912–916 17330104, 1:CAS:528:DC%2BD2sXksFelt7g%3DPubMedGoogle Scholar
  26. 26.
    Isken F, Steffen B, Merk S, et al. Identification of acute myeloid leukaemia associated microRNA expression patterns. Br J Haematol, 2008, 140(2): 153–161 18173753, 1:CAS:528:DC%2BD1cXitVOnt7s%3D, 10.1111/j.1365-2141.2007.06915.xCrossRefPubMedGoogle Scholar
  27. 27.
    Dixon-McIver A, East P, Mein C A, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE, 2008, 3(5): e2141 18478077, 10.1371/journal.pone.0002141, 1:CAS:528:DC%2BD1cXmvVSltb0%3DCrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Marton S, Garcia M R, Robello C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia, 2008, 22(2): 330–338 17989717, 10.1038/sj.leu.2405022, 1:CAS:528:DC%2BD1cXhvVylt7k%3DCrossRefPubMedGoogle Scholar
  29. 29.
    Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129(7): 1401–1414 17604727, 10.1016/j.cell.2007.04.040, 1:CAS:528:DC%2BD2sXotV2hsLk%3DCrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Takada S, Yamashita Y, Berezikov E, et al. MicroRNA expression profiles of human leukemias. Leukemia, 2008, 22(6): 1274–1278 17989710, 10.1038/sj.leu.2405031, 1:CAS:528:DC%2BD1cXntVCjs7w%3DCrossRefPubMedGoogle Scholar
  31. 31.
    Galm O, Herman J G, Baylin S B. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev, 2006, 20(1): 1–13 16426940, 10.1016/j.blre.2005.01.006, 1:CAS:528:DC%2BD28XitVSnu7c%3DCrossRefPubMedGoogle Scholar
  32. 32.
    Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res, 2007, 67(4): 1419–1423 17308078, 10.1158/0008-5472.CAN-06-4074, 1:CAS:528:DC%2BD2sXhvVWruro%3DCrossRefPubMedGoogle Scholar
  33. 33.
    Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 2006, 9(6): 435–443 16766263, 10.1016/j.ccr.2006.04.020, 1:CAS:528:DC%2BD28Xmt1eksLY%3DCrossRefPubMedGoogle Scholar
  34. 34.
    Meng F, Wehbe-Janek H, Henson R, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene, 2008, 27(3): 378–386 17621267, 10.1038/sj.onc.1210648, 1:CAS:528:DC%2BD1cXksVKnsQ%3D%3DCrossRefPubMedGoogle Scholar
  35. 35.
    Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res, 2008, 68(11): 4123–4132 18519671, 10.1158/0008-5472.CAN-08-0325, 1:CAS:528:DC%2BD1cXmsFKmtLo%3DCrossRefPubMedGoogle Scholar
  36. 36.
    Zhang L, Volinia S, Bonome T, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA, 2008, 105(19): 7004–7009 18458333, 10.1073/pnas.0801615105, 1:CAS:528:DC%2BD1cXmt1Ghs7k%3DCrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Scott G K, Mattie M D, Berger C E, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 2006, 66(3): 1277–1281 16452179, 10.1158/0008-5472.CAN-05-3632, 1:CAS:528:DC%2BD28XpsVejtQ%3D%3DCrossRefPubMedGoogle Scholar
  38. 38.
    Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 2007, 12(5): 457–466c 17996649, 10.1016/j.ccr.2007.09.020, 1:CAS:528:DC%2BD2sXhtl2nurrOCrossRefPubMedGoogle Scholar
  39. 39.
    Johansen L M, Iwama A, Lodie T A, et al. c-Myc is a critical target for C/EBPαlpha in granulopoiesis. Mol Cell Biol, 2001, 21(11): 3789–3806 11340171, 10.1128/MCB.21.11.3789-3806.2001, 1:CAS:528:DC%2BD3MXjs1yjsr4%3DCrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Pabst T, Mueller B U, Harakawa N, et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPαlpha in t(8: 21) myeloid leukemia. Nat. Med, 2001, 7(4): 444–451 11283671, 10.1038/86515, 1:CAS:528:DC%2BD3MXis1yks7g%3DCrossRefPubMedGoogle Scholar
  41. 41.
    Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 2007, 67(4): 1424–1429 17308079, 10.1158/0008-5472.CAN-06-4218, 1:CAS:528:DC%2BD2sXhvVWrurk%3DCrossRefPubMedGoogle Scholar
  42. 42.
    Ekholm S V, Reed S I. Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol, 2000, 12(6): 676–684 11063931, 10.1016/S0955-0674(00)00151-4, 1:CAS:528:DC%2BD3cXovVagsL8%3DCrossRefPubMedGoogle Scholar
  43. 43.
    Grossel M J, Hinds P W. Beyond the cell cycle: a new role for Cdk6 in differentiation. J Cell Biochem, 2006, 97(3): 485–493 16294322, 10.1002/jcb.20712, 1:CAS:528:DC%2BD28Xht1Sqsb8%3DCrossRefPubMedGoogle Scholar
  44. 44.
    Hirai H, Kawanishi N, Iwasawa Y. Recent advances in the development of selective small molecule inhibitors for cyclin-dependent kinases. Curr Top Med Chem, 2005, 5(2): 167–179 15853645, 10.2174/1568026053507688, 1:CAS:528:DC%2BD2MXjtFyksbw%3DCrossRefPubMedGoogle Scholar
  45. 45.
    Hayette S, Tigaud I, Callet-Bauchu E, et al. In B-cell chronic lymphocytic leukemias, 7q21 translocations lead to overexpression of the CDK6 gene. Blood, 2003, 102(4): 1549–1550 12900351, 10.1182/blood-2003-04-1220, 1:CAS:528:DC%2BD3sXmsFWktbs%3DCrossRefPubMedGoogle Scholar
  46. 46.
    Matushansky I, Radparvar F, Skoultchi A I. CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene, 2003, 22(27): 4143–4149 12833137, 10.1038/sj.onc.1206484, 1:CAS:528:DC%2BD3sXkvFSkurw%3DCrossRefPubMedGoogle Scholar
  47. 47.
    Bueno M J, Pérez de Castro I, Gómez de Cedrón M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell, 2008, 13(6): 496–506 18538733, 10.1016/j.ccr.2008.04.018, 1:CAS:528:DC%2BD1cXns1yhtbs%3DCrossRefPubMedGoogle Scholar
  48. 48.
    Cimmino A, CalinG A, Fabbri M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sc USA, 2005, 102(39): 13944–13949 10.1073/pnas.0506654102, 1:CAS:528:DC%2BD2MXhtVOqsbjKCrossRefGoogle Scholar
  49. 49.
    Cory S, Adams J M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2002, 2(9): 647–656 12209154, 10.1038/nrc883, 1:CAS:528:DC%2BD38Xmslamsrw%3DCrossRefPubMedGoogle Scholar
  50. 50.
    Galonek H L, Hardwick J M. Upgrading the BCL-2 network. Nat Cell Biol, 2006, 8(12): 1317–1319 17139279, 10.1038/ncb1206-1317, 1:CAS:528:DC%2BD28Xht1Kju73ICrossRefPubMedGoogle Scholar
  51. 51.
    Virgilio L, Narducci M G, Isobe M, et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci USA, 1994, 91(26): 12530–12534 7809072, 10.1073/pnas.91.26.12530, 1:CAS:528:DyaK2MXivVCrtr0%3DCrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Bichi R, Shinton S A, Martin E S, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA, 2002, 99(10): 6955–6960 12011454, 10.1073/pnas.102181599, 1:CAS:528:DC%2BD38XjvFCqsL8%3DCrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Herling M, Patel K A, Khalili J, et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia, 2006, 20(2): 280–285 16341048, 10.1038/sj.leu.2404017, 1:CAS:528:DC%2BD28Xmsl2rug%3D%3DCrossRefPubMedGoogle Scholar
  54. 54.
    Pekarsky Y, Koval A, Hallas C, et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA, 2000, 97(7): 3028–3033 10716693, 10.1073/pnas.040557697, 1:CAS:528:DC%2BD3cXitlWrur0%3DCrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Laine J, Kunstle G, Obata T, et al. The proto-oncogene TCL1 is an Akt kinase coactivator. Mol Cell, 2000, 6(2): 395–407 10983986, 10.1016/S1097-2765(00)00039-3, 1:CAS:528:DC%2BD3cXmsFWmtr8%3DCrossRefPubMedGoogle Scholar
  56. 56.
    Parcellier A, Tintignac L A, Zhuravleva E, et al. PKB and the mitochondria: AKTing on apoptosis. Cell Signal, 2008, 20(1): 21–30 17716864, 10.1016/j.cellsig.2007.07.010, 1:CAS:528:DC%2BD2sXhtlGgsLvECrossRefPubMedGoogle Scholar
  57. 57.
    Datta S R, Brunet A, Greenberg M E. Cellular survival: a play in three Akts. Genes Dev, 1999, 13(22): 2905–2927 10579998, 10.1101/gad.13.22.2905, 1:CAS:528:DyaK1MXnvVCltLo%3DCrossRefPubMedGoogle Scholar
  58. 58.
    Nechushtan A, Smith C L, Hsu Y T, et al. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J, 1999, 18(9): 2330–2341 10228148, 10.1093/emboj/18.9.2330, 1:CAS:528:DyaK1MXjtlKhsro%3DCrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Yamaguchi H, Wang H G. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene, 2001, 20(53): 7779–7786 11753656, 10.1038/sj.onc.1204984, 1:CAS:528:DC%2BD3MXptFOntL0%3DCrossRefPubMedGoogle Scholar
  60. 60.
    Sawyers C L, Callahan W, Witte O N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell, 1992, 70(6): 901–910 1525828, 10.1016/0092-8674(92)90241-4, 1:CAS:528:DyaK38XmtV2qtrg%3DCrossRefPubMedGoogle Scholar
  61. 61.
    O’Donnell K A, Wentzel E A, Zeller K I, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, 435(7043): 839–843 15944709, 10.1038/nature03677, 1:CAS:528:DC%2BD2MXkvVGgsLg%3DCrossRefPubMedGoogle Scholar
  62. 62.
    Sánchez-García I, Grütz G. Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci USA, 1995, 92(12): 5287–5291 7777499, 10.1073/pnas.92.12.5287CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Wang C, Curtis J E, Geissler E N, et al. The expression of the proto-oncogene C-kit in the blast cells of acute myeloblastic leukemia. Leukemia, 1989, 3(10): 699–702 2476640, 1:STN:280:DyaL1MzotlGhtA%3D%3DPubMedGoogle Scholar
  64. 64.
    Nadia F, Laura F, Elvira P, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 2005, 102(50): 18081–18086 10.1073/pnas.0506216102, 1:CAS:528:DC%2BD2MXhtlersr3KCrossRefGoogle Scholar
  65. 65.
    Kawasaki H, Taira K. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf), 2004, (48): 211–212Google Scholar
  66. 66.
    Capecchi M R. Hox genes and mammalian development. Cold Spring Harb Symp Quant Biol, 1997, 62: 273–281 9598361, 1:CAS:528:DyaK1cXjtlaqt70%3DCrossRefPubMedGoogle Scholar
  67. 67.
    Blatt C, Aberdam D, Schwartz R, et al. DNA rearrangement of a homeobox gene in myeloid leukaemic cells. EMBO J, 1988, 7(13): 4283–9420 2907477, 1:CAS:528:DyaL1MXltV2qtrY%3DPubMedCentralPubMedGoogle Scholar
  68. 68.
    Knoepfler P S, Sykes D B, Pasillas M, et al. HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation. Oncogene, 2001, 20(39): 5440–5448 11571641, 10.1038/sj.onc.1204710, 1:CAS:528:DC%2BD3MXntFWjsLY%3DCrossRefPubMedGoogle Scholar
  69. 69.
    Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in CLL is regulated by miR-29 and miR-181. Cancer Res, 2006, 66(24): 11590–11593 17178851, 10.1158/0008-5472.CAN-06-3613, 1:CAS:528:DC%2BD28XhtlagurjFCrossRefPubMedGoogle Scholar
  70. 70.
    Yan X J, Albesiano E, Zanesi N, et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2006, 103(31): 11713–11718 16864779, 10.1073/pnas.0604564103, 1:CAS:528:DC%2BD28XotFagsLg%3DCrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol, 2008, 8(5): 380–390 18421304, 10.1038/nri2304, 1:CAS:528:DC%2BD1cXltFejsbk%3DCrossRefPubMedGoogle Scholar
  72. 72.
    Landais S, Landry S, Legault P, et al. Oncogenic potential of the miR-106–363 cluster and its implication in human T-cell leukemia. Cancer Res, 2007, 67(12): 5699–5707 17575136, 10.1158/0008-5472.CAN-06-4478, 1:CAS:528:DC%2BD2sXmsFCqsLk%3DCrossRefPubMedGoogle Scholar
  73. 73.
    Thorsteinsdottir U, Sauvageau G, Hough M R. Over-expression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol, 1997, 17(1): 495–505 8972230, 1:CAS:528:DyaK2sXhtlymtg%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Kroon E, Thorsteinsdottir U, Mayotte N, et al. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J, 2001, 20(3): 350–361 11157742, 10.1093/emboj/20.3.350, 1:CAS:528:DC%2BD3MXitFGqsbc%3DCrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Falini B, Nicoletti I, Martelli F M, et al. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+AML): Biological and clinical features. Blood, 2007, 109(3): 874–885 17008539, 10.1182/blood-2006-07-012252, 1:CAS:528:DC%2BD2sXjtFersLY%3DCrossRefPubMedGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Key Laboratory of Genetic Engineering of the Ministry of Education, State Key Laboratory of BiocontrolSun Yan-Sen UniversityGuangzhouChina

Personalised recommendations