Science in China Series C: Life Sciences

, Volume 52, Issue 2, pp 135–146 | Cite as

Assembly and structure of protein phosphatase 2A

  • YiGong ShiEmail author
In Memoriam: Professor Ray Wu


Protein phosphatase 2A (PP2A) represents a conserved family of important protein serine/threonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, mediated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interaction with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.


protein phosphorylation dephosphorylation PP2A structure mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell, 1995, 80: 225–236 7834742, 10.1016/0092-8674(95)90405-0, 1:CAS:528:DyaK2MXjtlGnsrs%3DCrossRefPubMedGoogle Scholar
  2. 2.
    Fischer E H, Krebs E G. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem, 1955, 216: 121–132 13252012, 1:CAS:528:DyaG2MXosVOisQ%3D%3DPubMedGoogle Scholar
  3. 3.
    Sutherland E W Jr, Wosilait W D. Inactivation and activation of liver phosphorylase. Nature, 1955, 175: 169–170 13235837, 10.1038/175169a0, 1:CAS:528:DyaG2MXjvFKktg%3D%3DCrossRefPubMedGoogle Scholar
  4. 4.
    Krebs E G, Fischer E H. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta, 1956, 20: 150–157 13315361, 10.1016/0006-3002(56)90273-6, 1:CAS:528:DyaG28XmtVCkug%3D%3DCrossRefPubMedGoogle Scholar
  5. 5.
    Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860–921 11237011, 10.1038/35057062, 1:CAS:528:DC%2BD3MXhsFCjtLc%3DCrossRefPubMedGoogle Scholar
  6. 6.
    Johnson S A, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods, 2005, 2: 17–25 15789031, 10.1038/nmeth731, 1:CAS:528:DC%2BD2MXisVGiu7w%3DCrossRefPubMedGoogle Scholar
  7. 7.
    Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304–1351 11181995, 10.1126/science.1058040, 1:CAS:528:DC%2BD3MXhtlSgsbo%3DCrossRefPubMedGoogle Scholar
  8. 8.
    Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117: 699–711 15186772, 10.1016/j.cell.2004.05.018, 1:CAS:528:DC%2BD2cXltlKisbc%3DCrossRefPubMedGoogle Scholar
  9. 9.
    Cohen P T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci, 1997, 22: 245–251 9255065, 10.1016/S0968-0004(97)01060-8, 1:CAS:528:DyaK2sXks1yltLw%3DCrossRefPubMedGoogle Scholar
  10. 10.
    Chernoff J, Li H C, Cheng Y S, et al. Characterization of a phosphotyrosyl protein phosphatase activity associated with a phosphoseryl protein phosphatase of Mr = 95,000 from bovine heart. J Biol Chem, 1983, 258: 7852–7857 6305959, 1:CAS:528:DyaL3sXktlGjsrY%3DPubMedGoogle Scholar
  11. 11.
    Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J, 2001, 353: 417–439 11171037, 10.1042/0264-6021:3530417, 1:CAS:528:DC%2BD3MXhtlOrs70%3DCrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Virshup D M. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol, 2000, 12: 180–185 10712915, 10.1016/S0955-0674(99)00074-5, 1:CAS:528:DC%2BD3cXitVantLg%3DCrossRefPubMedGoogle Scholar
  13. 13.
    Lechward K, Awotunde O S, Swiatek W, et al. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol, 2001, 48: 921–933 11996003, 1:CAS:528:DC%2BD38XhsFKrsbg%3DPubMedGoogle Scholar
  14. 14.
    Mumby M C, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev, 1993, 73: 673–699 8415923, 1:STN:280:DyaK2c%2Fit1Kgsg%3D%3DPubMedGoogle Scholar
  15. 15.
    Janssens V, Goris J, van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev, 2005, 15: 34–41 15661531, 10.1016/j.gde.2004.12.004, 1:CAS:528:DC%2BD2MXmvFekug%3D%3DCrossRefPubMedGoogle Scholar
  16. 16.
    Mumby M. PP2A: unveiling a reluctant tumor suppressor. Cell, 2007, 130: 21–24 17632053, 10.1016/j.cell.2007.06.034, 1:CAS:528:DC%2BD2sXotlGmtrw%3DCrossRefPubMedGoogle Scholar
  17. 17.
    Lee J, Chen Y, Tolstykh T, et al. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc Natl Acad Sci USA, 1996, 93: 6043–6047 8650216, 10.1073/pnas.93.12.6043, 1:CAS:528:DyaK28Xjs1Ojtr4%3DCrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Xie H, Clarke S. Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem, 1994, 269: 1981–1984 8294450, 1:CAS:528:DyaK2cXhtVSgs7g%3DPubMedGoogle Scholar
  19. 19.
    Xie H, Clarke S. An enzymatic activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A. Biochem Biophys Res Commun, 1994, 203: 1710–1715 7945320, 10.1006/bbrc.1994.2383, 1:CAS:528:DyaK2cXmsV2itbs%3DCrossRefPubMedGoogle Scholar
  20. 20.
    Xie H, Clarke S. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem, 1993, 268: 13364–13371 8514774, 1:CAS:528:DyaK3sXltFWrurs%3DPubMedGoogle Scholar
  21. 21.
    Lee J, Stock J. Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem, 1993, 268: 19192–19195 8396127, 1:CAS:528:DyaK3sXltlCitbg%3DPubMedGoogle Scholar
  22. 22.
    Xu Y, Xing Y, Chen Y, et al. Structure of the protein phosphatase 2A holoenzyme. Cell, 2006, 127: 1239–1251 17174897, 10.1016/j.cell.2006.11.033, 1:CAS:528:DC%2BD2sXhs1ensA%3D%3DCrossRefPubMedGoogle Scholar
  23. 23.
    Xing Y, Xu Y, Chen Y, et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell, 2006, 127: 341–353. 17055435, 10.1016/j.cell.2006.09.025, 1:CAS:528:DC%2BD28XhtFOkt73KCrossRefPubMedGoogle Scholar
  24. 24.
    Tolstykh T, Lee J, Vafai S, et al. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. Embo J, 2000, 19: 5682–5691 11060019, 10.1093/emboj/19.21.5682, 1:CAS:528:DC%2BD3cXovFaiur0%3DCrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Wei H, Ashby D G, Moreno C S, et al. Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J Biol Chem, 2001, 276: 1570–1577 11038366, 10.1074/jbc.M008694200, 1:CAS:528:DC%2BD3MXmtV2msg%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Ogris E, Gibson D M, Pallas D C. Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene, 1997, 15: 911–917 9285686, 10.1038/sj.onc.1201259, 1:CAS:528:DyaK2sXlvFSisbs%3DCrossRefPubMedGoogle Scholar
  27. 27.
    Ikehara T, Ikehara S, Imamura S, et al. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem Biophys Res Commun, 2007, 354: 1052–1057 17274953, 10.1016/j.bbrc.2007.01.085, 1:CAS:528:DC%2BD2sXhs1SnsLw%3DCrossRefPubMedGoogle Scholar
  28. 28.
    Xu Y, Chen Y, Zhang P, et al. Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell, 2008, 31: 873–885 18922469, 10.1016/j.molcel.2008.08.006, 1:CAS:528:DC%2BD1cXht1amsb%2FMCrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Chung H, Nairn A C, Murata K, et al. Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. Biochemistry, 1999, 38: 10371–10376 10441131, 10.1021/bi990902g, 1:CAS:528:DyaK1MXksFSnu7c%3DCrossRefPubMedGoogle Scholar
  30. 30.
    Kong M, Fox C J, Mu J, et al. The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 2004, 306: 695–698 15499020, 10.1126/science.1100537, 1:CAS:528:DC%2BD2cXos1KqtLw%3DCrossRefPubMedGoogle Scholar
  31. 31.
    Mumby M. A new role for protein methylation: switching partners at the phosphatase ball. Sci STKE, 2001, 2001: PE1Google Scholar
  32. 32.
    Wu J, Tolstykh T, Lee J, et al. Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. Embo J, 2000, 19: 5672–5681 11060018, 10.1093/emboj/19.21.5672, 1:CAS:528:DC%2BD3cXovFaiurw%3DCrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    De Baere I, Derua R, Janssens V, et al. Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry, 1999, 38: 16539–16547 10600115, 10.1021/bi991646aCrossRefPubMedGoogle Scholar
  34. 34.
    Turowski P, Fernandez A, Favre B, et al. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol, 1995, 129: 397–410 7721943, 10.1083/jcb.129.2.397, 1:CAS:528:DyaK2MXkvFCis74%3DCrossRefPubMedGoogle Scholar
  35. 35.
    Lee J A, Pallas D C. Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells. J Biol Chem, 2007, 282: 30974–30984 17724024, 10.1074/jbc.M704861200, 1:CAS:528:DC%2BD2sXhtFGgs7zKCrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Hemmings B A, Adams-Pearson C, Maurer F, et al. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 1990, 29: 3166–3173 2159327, 10.1021/bi00465a002, 1:CAS:528:DyaK3cXitlWrs7g%3DCrossRefPubMedGoogle Scholar
  37. 37.
    Walter G, Ferre F, Espiritu O, et al. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc Natl Acad Sci USA, 1989, 86: 8669–8672 2554323, 10.1073/pnas.86.22.8669, 1:CAS:528:DyaK3cXitlSnt7c%3DCrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Groves M R, Hanlon N, Turowski P, et al. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell, 1999, 96: 99–110 9989501, 10.1016/S0092-8674(00)80963-0, 1:CAS:528:DyaK1MXmslagug%3D%3DCrossRefPubMedGoogle Scholar
  39. 39.
    Cho U S, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 2007, 445: 53–57 17086192, 10.1038/nature05351, 1:CAS:528:DC%2BD2sXhsFOmsA%3D%3DCrossRefPubMedGoogle Scholar
  40. 40.
    Chen Y, Xu Y, Bao Q, et al. Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol, 2007, 14: 527–534 17529992, 10.1038/nsmb1254, 1:CAS:528:DC%2BD2sXmtVyjtbo%3DCrossRefPubMedGoogle Scholar
  41. 41.
    Cho U S, Morrone S, Sablina A A, et al. Structural basis of PP2A inhibition by small t antigen. PLoS Biol, 2007, 5: e202 17608567, 10.1371/journal.pbio.0050202CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Ruediger R, Roeckel D, Fait J, et al. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol, 1992, 12: 4872–4882 1328865, 1:CAS:528:DyaK38XmsVOksL4%3DCrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Ruediger R, Hentz M, Fait J, et al. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol, 1994, 68: 123–129 8254721, 1:CAS:528:DyaK2cXhtVSntbg%3DPubMedCentralPubMedGoogle Scholar
  44. 44.
    Kremmer E, Ohst K, Kiefer J, et al. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol, 1997, 17: 1692–1701 9032296, 1:CAS:528:DyaK2sXhtlyqtrc%3DCrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Yang S I, Lickteig R L, Estes R, et al. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol, 1991, 11: 1988–1995 1706474, 1:CAS:528:DyaK3MXhsF2ksrg%3DCrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Scheidtmann K H, Mumby M C, Rundell K, et al. Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol Cell Biol, 1991, 11: 1996–2003 1848668, 1:CAS:528:DyaK3MXhsF2ksrk%3DCrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Ruediger R, Pham H T, Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene, 2001, 20: 10–15 11244497, 10.1038/sj.onc.1204059, 1:CAS:528:DC%2BD3MXhtFChsbw%3DCrossRefPubMedGoogle Scholar
  48. 48.
    Wang S S, Esplin E D, Li J L, et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 1998, 282: 284–287 9765152, 10.1126/science.282.5387.284, 1:CAS:528:DyaK1cXmsF2jurc%3DCrossRefPubMedGoogle Scholar
  49. 49.
    Ruediger R, Pham H T, Walter G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene, 2001, 20: 1892–1899 11313937, 10.1038/sj.onc.1204279, 1:CAS:528:DC%2BD3MXivFKhtrc%3DCrossRefPubMedGoogle Scholar
  50. 50.
    Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J, 1988, 256: 283–290 2851982, 1:CAS:528:DyaL1MXitVequg%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    MacKintosh C, Beattie K A, Klumpp S, et al. Cyanobacterial micro-cystin- LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett, 1990, 264: 187–192 2162782, 10.1016/0014-5793(90)80245-E, 1:CAS:528:DyaK3cXlsVOjs74%3DCrossRefPubMedGoogle Scholar
  52. 52.
    Kitajima T S, Sakuno T, Ishiguro K, et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature, 2006, 441: 46–52 16541025, 10.1038/nature04663, 1:CAS:528:DC%2BD28XktVGltr0%3DCrossRefPubMedGoogle Scholar
  53. 53.
    Riedel C G, Katis VL, Katou Y, et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature, 2006, 441: 53–61 16541024, 10.1038/nature04664, 1:CAS:528:DC%2BD28XktVGltrg%3DCrossRefPubMedGoogle Scholar
  54. 54.
    Tang Z, Shu H, Qi W, et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell, 2006, 10: 575–585 16580887, 10.1016/j.devcel.2006.03.010, 1:CAS:528:DC%2BD28XltVyktr8%3DCrossRefPubMedGoogle Scholar
  55. 55.
    Conti E, Uy M, Leighton L, et al. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell, 1998, 94: 193–204 9695948, 10.1016/S0092-8674(00)81419-1, 1:CAS:528:DyaK1cXltVOntL8%3DCrossRefPubMedGoogle Scholar
  56. 56.
    Graham T A, Weaver C, Mao F, et al. Crystal structure of a beta-catenin/Tcf complex. Cell, 2000, 103: 885–896 11136974, 10.1016/S0092-8674(00)00192-6, 1:CAS:528:DC%2BD3cXovFCjt7c%3DCrossRefPubMedGoogle Scholar
  57. 57.
    Kamibayashi C, Lickteig R L, Estes R, et al. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. J Biol Chem, 1992, 267: 21864–21872 1328247, 1:CAS:528:DyaK3sXitVynsr4%3DPubMedGoogle Scholar
  58. 58.
    Kamibayashi C, Estes R, Lickteig R L, et al. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J Biol Chem, 1994, 269: 20139–20148 8051102, 1:CAS:528:DyaK2cXlt1yntrw%3DPubMedGoogle Scholar
  59. 59.
    Li X, Virshup D M. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. Eur J Biochem, 2002, 269: 546–552 11856313, 10.1046/j.0014-2956.2001.02680.x, 1:CAS:528:DC%2BD38XhtVyhu7s%3DCrossRefPubMedGoogle Scholar
  60. 60.
    Janssens V, Jordens J, Stevens I, et al. Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B″/PR72 subunit of protein phosphatase 2A. J Biol Chem, 2003, 278: 10697–10706 12524438, 10.1074/jbc.M211717200, 1:CAS:528:DC%2BD3sXitVCqsbo%3DCrossRefPubMedGoogle Scholar
  61. 61.
    Ikehara T, Ikehara S, Imamura S, et al. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem Biophys Res Commun, 2007, 354: 1052–1057 17274953, 10.1016/j.bbrc.2007.01.085, 1:CAS:528:DC%2BD2sXhs1SnsLw%3DCrossRefPubMedGoogle Scholar
  62. 62.
    Goedert M, Spillantini M G. A century of Alzheimer’s disease. Science, 2006, 314: 777–781 17082447, 10.1126/science.1132814, 1:CAS:528:DC%2BD28XhtFKit73KCrossRefPubMedGoogle Scholar
  63. 63.
    Goedert M, Jakes R, Qi Z, et al. Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. J Neurochem, 1995, 65: 804–807Google Scholar
  64. 64.
    Sontag E, Nunbhakdi-Craig V, Lee G, et al. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron, 1996, 17: 1201–1207 8982166, 10.1016/S0896-6273(00)80250-0, 1:CAS:528:DyaK2sXislCiuw%3D%3DCrossRefPubMedGoogle Scholar
  65. 65.
    Sontag E, Nunbhakdi-Craig V, Lee G, et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem, 1999, 274: 25490–25498 10464280, 10.1074/jbc.274.36.25490, 1:CAS:528:DyaK1MXmtVWiu7o%3DCrossRefPubMedGoogle Scholar
  66. 66.
    Gong C X, Lidsky T, Wegiel J, et al. Phosphorylation of microtubule- associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem, 2000, 275: 5535–5544 10681533, 10.1074/jbc.275.8.5535, 1:CAS:528:DC%2BD3cXhsFKktr4%3DCrossRefPubMedGoogle Scholar
  67. 67.
    Bennecib M, Gong C X, Grundke-Iqbal I, et al. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett, 2000, 490: 15–22 10.1016/S0014-5793(01)02127-5CrossRefGoogle Scholar
  68. 68.
    Kins S, Crameri A, Evans D R, et al. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem, 2001, 276: 38193–38200 11473109, 1:CAS:528:DC%2BD3MXotFOru7g%3DPubMedGoogle Scholar
  69. 69.
    Weingarten M D, Lockwood A H, Hwo S Y, et al. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA, 1975, 72: 1858–1862 1057175, 10.1073/pnas.72.5.1858, 1:CAS:528:DyaE2MXkt1ersbw%3DCrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Witman G B, Cleveland D W, Weingarten M D, et al. Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci USA, 1976, 73: 4070–4074 1069293, 10.1073/pnas.73.11.4070, 1:CAS:528:DyaE2sXjvVyqsg%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Alonso A C, Zaidi T, Grundke-Iqbal I, et al. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA, 1994, 91: 5562–5566 8202528, 10.1073/pnas.91.12.5562, 1:STN:280:DyaK2c3mtFKhtA%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Drewes G, Mandelkow EM, Baumann K, et al. Dephosphorylation of tau protein and Alzheimer paired helical filaments by calcineurin and phosphatase-2A. FEBS Lett, 1993, 336: 425–432 8282105, 10.1016/0014-5793(93)80850-T, 1:CAS:528:DyaK2cXhtlWgsbw%3DCrossRefPubMedGoogle Scholar
  73. 73.
    Gong C X, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer’s disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience, 1994, 61: 765–772 7838376, 10.1016/0306-4522(94)90400-6, 1:CAS:528:DyaK2MXms1eltw%3D%3DCrossRefPubMedGoogle Scholar
  74. 74.
    Bryant J C, Westphal R S, Wadzinski B E. Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J, 1999, 339: 241–246 10191253, 10.1042/0264-6021:3390241, 1:CAS:528:DyaK1MXjtVaktrk%3DCrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Yu X X, Du X, Moreno C S, et al. Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol Biol Cell, 2001, 12: 185–199 11160832, 1:CAS:528:DC%2BD3MXlvFKktw%3D%3DCrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Kloeker S, Bryant J C, Strack S, et al. Carboxymethylation of nuclear protein serine/threonine phosphatase X. Biochem J, 1997, 327( Pt 2): 481–486 9359419, 1:CAS:528:DyaK2sXntV2jtLg%3DCrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Longin S, Zwaenepoel K, Louis J V, et al. Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit. J Biol Chem, 2007, 282: 26971–26980 17635907, 10.1074/jbc.M704059200, 1:CAS:528:DC%2BD2sXhtVWjsLjKCrossRefPubMedGoogle Scholar
  78. 78.
    Gentry M S, Li Y, Wei H, et al. A novel assay for protein phosphatase 2A (PP2A) complexes in vivo reveals differential effects of covalent modifications on different Saccharomyces cerevisiae PP2A heterotrimers. Eukaryot Cell, 2005, 4: 1029–1040 15947195, 10.1128/EC.4.6.1029-1040.2005, 1:CAS:528:DC%2BD2MXlvFSmtL0%3DCrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Ogris E, Du X, Nelson K C, et al. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem, 1999, 274: 14382–14391 10318862, 10.1074/jbc.274.20.14382, 1:CAS:528:DyaK1MXjsFWqtLc%3DCrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Longin S, Jordens J, Martens E, et al. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J, 2004, 380: 111–119 14748741, 10.1042/BJ20031643, 1:CAS:528:DC%2BD2cXks1yqsrY%3DCrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Xing Y, Li Z, Chen Y, et al. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell, 2008, 133: 154–163 18394995, 10.1016/j.cell.2008.02.041, 1:CAS:528:DC%2BD1cXkslOks7w%3DCrossRefPubMedGoogle Scholar
  82. 82.
    Longin S, Zwaenepoel K, Martens E, et al. Spatial control of protein phosphatase 2A (de)methylation. Exp Cell Res, 2008, 314: 68–81 17803990, 10.1016/j.yexcr.2007.07.030, 1:CAS:528:DC%2BD2sXhtlyrtrbOCrossRefPubMedGoogle Scholar
  83. 83.
    Fellner T, Lackner D H, Hombauer H, et al. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev, 2003, 17: 2138–2150 12952889, 10.1101/gad.259903, 1:CAS:528:DC%2BD3sXntFeqsrw%3DCrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Hombauer H, Weismann D, Mudrak I, et al. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol, 2007, 5: e155 17550305, 10.1371/journal.pbio.0050155CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Chao Y, Xing Y, Chen Y, et al. Structure and Mechanism of the Phosphotyrosyl Phosphatase Activator. Mol Cell, 2006, 23: 535–546 16916641, 10.1016/j.molcel.2006.07.027, 1:CAS:528:DC%2BD28Xpt1Sntbc%3DCrossRefPubMedGoogle Scholar
  86. 86.
    Leulliot N, Vicentini G, Jordens J, et al. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol Cell, 2006, 23: 413–424 16885030, 10.1016/j.molcel.2006.07.008, 1:CAS:528:DC%2BD28XovVWlu70%3DCrossRefPubMedGoogle Scholar
  87. 87.
    Magnusdottir A, Stenmark P, Flodin S, et al. The crystal structure of a human PP2A phosphatase activator reveals a novel fold and highly conserved cleft implicated in protein-protein interactions. J Biol Chem, 2006, 281:22434–22438 16782712, 10.1074/jbc.C600100200, 1:CAS:528:DC%2BD28XnvVSqurs%3DCrossRefPubMedGoogle Scholar
  88. 88.
    Yang J, Roe S M, Prickett T D, et al. The structure of Tap42/alpha4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry, 2007, 46: 8807–8815 17616149, 10.1021/bi7007118, 1:CAS:528:DC%2BD2sXns1Cksr0%3DCrossRefPubMedGoogle Scholar
  89. 89.
    Cayla X, Goris J, Hermann J, et al. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry, 1990, 29: 658–667 2159785, 10.1021/bi00455a010, 1:CAS:528:DyaK3cXltFWjtg%3D%3DCrossRefPubMedGoogle Scholar
  90. 90.
    van Hoof C, Cayla X, Bosch M, et al. The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. Eur J Biochem, 1994, 226: 899–907 7813481, 10.1111/j.1432-1033.1994.00899.xCrossRefPubMedGoogle Scholar
  91. 91.
    Prickett T D, Brautigan D L. Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits. J Biol Chem, 2004, 279: 38912–38920 15252037, 10.1074/jbc.M401444200, 1:CAS:528:DC%2BD2cXnt1yjsL8%3DCrossRefPubMedGoogle Scholar
  92. 92.
    Nicholls A, Sharp K A, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct Funct Genet, 1991, 11: 281–296 10.1002/prot.340110407, 1:CAS:528:DyaK38XhtVWgur4%3DCrossRefGoogle Scholar
  93. 93.
    Kraulis P J. Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr, 1991, 24: 946–950 10.1107/S0021889891004399CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Center for Structural Biology, Department of Biological Sciences and Biotechnology, and School of MedicineTsinghua UniversityBeijingChina

Personalised recommendations