Science in China Series C: Life Sciences

, Volume 51, Issue 12, pp 1088–1093 | Cite as

Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress

  • Dong WeiEmail author
  • Feng Chen
  • Gu Chen
  • XueWu Zhang
  • LongJun Liu
  • Hao Zhang


The fast growing unicellular green microalgae Chlorella protothecoides has attracted interest as a promising organism for commercial production of a high-value carotenoid, lutein, by heterotrophic fermentation. Effects of two oxidant-forming reactive oxygen species (ROS) on the biomass concentration, and yield and content of lutein in batch culture of heterotrophic Chlorella protothecoides were investigated in this study. The addition of 0.1 mmol/L H2O2 and 0.01 mmol/L NaClO plus 0.5 mmol/L Fe2+ to the culture led to the generation of ·OH and enhanced the lutein content from 1.75 to 1.90 and 1.95 mg/g, respectively. The lutein content further increased to 1.98 mg/g when 0.01 mmol/L H2O2 and 0.5 mmol/L NaClO were added to generate 1O2. The maximum yield of lutein (28.5, 29.8 and 31.4 mg/L) and a high biomass concentration (15.0, 15.3 and 15.9 g/L) were also achieved through the above treatments. The results indicated that 1O2 could promote lutein formation and enhance lutein production in heterotrophic Chlorella protothecoides. Moreover, 1O2 produced from the reaction of H2O2 and NaClO was more effective in enhancing lutein production and reducing biomass loss than ·OH from the reaction of H2O2 or NaClO plus Fe2+.


Chlorella protothecoides heterotrophic lutein oxidative stress ROS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klaui H, In: Britton G, Goodwin T W, eds. Industrial and commercial uses of carotenoids, Carotenoid Chemistry and Biochemistry. Oxford: Pergamon Press, 1982. 309–328CrossRefGoogle Scholar
  2. 2.
    Shi X M, Chen F, Yuan J P, et al. Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol, 1997, 9: 445–450, 10.1023/A:1007938215655, 1:CAS:528:DyaK1cXisFGrsLo%3DCrossRefGoogle Scholar
  3. 3.
    Alexandra A R, Andrew S. The science behind lutein. Toxicol Lett, 2004, 150: 57–83, 10.1016/j.toxlet.2003.10.031CrossRefGoogle Scholar
  4. 4.
    Park J S, Chew B P, Wong, T S. Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c mice. J Nutr, 1998, 128: 1650–1656, 9772131, 1:CAS:528:DyaK1cXmtlKit7c%3DPubMedGoogle Scholar
  5. 5.
    Bone R I A, Landrum J T, Dixon Z. Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp Eye Res, 2000, 71: 239–245, 10973733, 10.1006/exer.2000.0870, 1:CAS:528:DC%2BD3cXmtFGmurc%3DCrossRefPubMedGoogle Scholar
  6. 6.
    Olmedilla B, Granado F, Blanco, et al. Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric, 2001, 81: 904–909, 10.1002/jsfa.905, 1:CAS:528:DC%2BD3MXlt1Ght74%3DCrossRefGoogle Scholar
  7. 7.
    Beatty S, Nolan J, Kavanagh H, et al. Macular pigment optical density and its relationship with serum and dietary levels of lutein and zeaxanthin. Arch Biochem Biophy, 2004, 430: 70–76, 10.1016/, 1:CAS:528:DC%2BD2cXmvFeltrg%3DCrossRefGoogle Scholar
  8. 8.
    Del Campo J A, Moreno J, Rodríguez H, et al. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. J Biotechnol, 2000, 76:51–59, 10784296, 10.1016/S0168-1656(99)00178-9CrossRefPubMedGoogle Scholar
  9. 9.
    Del Campo J A, Rodríguez H, Moreno J, et al. Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol, 2001, 85:289–295, 11173095, 10.1016/S0168-1656(00)00380-1CrossRefPubMedGoogle Scholar
  10. 10.
    Del Campo J A, Rodríguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol, 2004, 64: 848–854, 14689249, 10.1007/s00253-003-1510-5CrossRefPubMedGoogle Scholar
  11. 11.
    Raymond Y N, Chen Feng. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem, 2001, 36: 1175–1179, 10.1016/S0032-9592(01)00157-1CrossRefGoogle Scholar
  12. 12.
    Wu Z Y, Shi X M. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol, 2007, 44, 13–18, 17209808, 10.1111/j.1472-765X.2006.02038.x, 1:CAS:528:DC%2BD2sXitlyht7o%3DCrossRefPubMedGoogle Scholar
  13. 13.
    Zhang X W, Shi X M, Chen F. A kinetic model for lutein production by the green microalga Chlorella protothecoides in heterotrophic culture. J Indust Microbiol Biotechnol, 1999, 23, 503–507, 10.1038/sj.jim.2900760, 1:CAS:528:DC%2BD3cXlsFOhtw%3D%3DCrossRefGoogle Scholar
  14. 14.
    Shi X M, Liu H J, Zhang X W, et al. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemi, 1999, 34: 341–347, 10.1016/S0032-9592(98)00101-0, 1:CAS:528:DyaK1MXksVSrtbg%3DCrossRefGoogle Scholar
  15. 15.
    Shi X M, Zhang X W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Tech, 2000, 27: 312–318, 10.1016/S0141-0229(00)00208-8, 1:CAS:528:DC%2BD3cXkslSjt7k%3DCrossRefGoogle Scholar
  16. 16.
    Shi X M. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog, 2002, 18: 723–727, 12153304, 10.1021/bp0101987, 1:CAS:528:DC%2BD38XltlCnsLY%3DCrossRefPubMedGoogle Scholar
  17. 17.
    Shi X M, Wu Z W, Chen F. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res, 2006, 50, 763–768, 16865749, 10.1002/mnfr.200600037, 1:CAS:528:DC%2BD28XovFKrurY%3DCrossRefPubMedGoogle Scholar
  18. 18.
    Orosa M, Torres E, Fidalgo P, et al. Production and analysis of secondary carotenoids in green algae. J Appl Phycol, 2000, 12: 553–556, 10.1023/A:1008173807143, 1:CAS:528:DC%2BD3cXoslejuro%3DCrossRefGoogle Scholar
  19. 19.
    Park E K, Lee G C. Astaxanthin production by Haematococcus pluvialis under various light intensity and wavelength. J Microbiol Biotechnol, 2001, 11: 1024–1030, 1:CAS:528:DC%2BD38XnsVehug%3D%3DGoogle Scholar
  20. 20.
    Salguero A, de la Morena B, Vigara J, et al. Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng, 2003, 20: 249–253, 12919805, 10.1016/S1389-0344(03)00065-0, 1:CAS:528:DC%2BD3sXmt1KhsrY%3DCrossRefPubMedGoogle Scholar
  21. 21.
    Ip P F, Chen F. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem, 2005, 40: 3491–3496, 10.1016/j.procbio.2005.02.014, 1:CAS:528:DC%2BD2MXhtVeiurbICrossRefGoogle Scholar
  22. 22.
    Shaish A, Avron M, Pick U, et al. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil. Planta, 1993, 190: 363–368, 10.1007/BF00196965, 1:CAS:528:DyaK3sXks1Oksb0%3DCrossRefGoogle Scholar
  23. 23.
    Fan L, Vonshak A, Zarka A, et al. Does astaxanthin protect Haematococcus against light damage. Natur forsch, 1998, 53: 90–93Google Scholar
  24. 24.
    Rise M, Cohen E, Vishkautsan M, et al. Accumulation of secondary carotenoids in Chlorella zofingiensis. J Plant Physiol, 1994, 144: 287–292, 1:CAS:528:DyaK2cXmslKqsrc%3DCrossRefGoogle Scholar
  25. 25.
    Bar E, Rise M, Vishkautsan M, et al. Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol, 1995, 146: 527–534, 1:CAS:528:DyaK2MXnsVyhsLg%3DCrossRefGoogle Scholar
  26. 26.
    Kobayashi M, Kakizono T, Nagai S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus. J Ferment Bioeng, 1993, 84,1: 94–99, 10.1016/S0922-338X(97)82794-8CrossRefGoogle Scholar
  27. 27.
    Chen F, Johns M R. Effect of C:N ratio and aeration on fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol, 1991, 3: 203–209, 10.1007/BF00003578, 1:CAS:528:DyaK38XhtVansrY%3DCrossRefGoogle Scholar
  28. 28.
    Shi X M, Chen F. Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Nahrung/Food, 1999, 43: 109–113, 10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K, 1:CAS:528:DyaK1MXmvVGmsL8%3DCrossRefGoogle Scholar
  29. 29.
    Halliwell B, Gutteridge M C. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett, 1992, 307: 108–112, 1322323, 10.1016/0014-5793(92)80911-Y, 1:CAS:528:DyaK38Xlt1Kmt7c%3DCrossRefPubMedGoogle Scholar
  30. 30.
    Cui K, Luo X L, Xu K Y, et al. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-Psych, 2004, 28: 771–799, 10.1016/j.pnpbp.2004.05.023, 1:CAS:528:DC%2BD2cXnsFSqtLs%3DCrossRefGoogle Scholar
  31. 31.
    Zhao W N, Han Y S, Saishi H. Quenching of singlet inglet oxygen arisen from NaOCl - H2O2 system by carotenoids. Acta Biophy Sin, 1997, 13: 137–142, 1:CAS:528:DyaK2sXmvVCqtL0%3DGoogle Scholar
  32. 32.
    Olinescu R, Smith T. In: Boriotti S, Denis D, Shohov T, eds. Free radicals in medicine. Oxygen Free Radicals. New York: Nova Science Publishers, 2002. 23–34Google Scholar
  33. 33.
    Fu W Y, Xu L H, Zhang Y Y, et al. Regulatory effect of reactive oxygen species on apoptosis induced by chemicals. Chin Pharmacol Toxicol, 2002, 16: 464–470, 1:CAS:528:DC%2BD3sXmsVarsr0%3DGoogle Scholar
  34. 34.
    Fraser P D, Miura Y, Misawa N. In vitro characteization of astaxanthin biosynthesis enzymes. J Biol Chem, 1997, 272,10: 6128–6132, 9045623, 10.1074/jbc.272.10.6278, 1:CAS:528:DyaK2sXhvVOnu78%3DCrossRefPubMedGoogle Scholar
  35. 35.
    Diretto G, Tavazza R, Welsch R, et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol, 2006, 6: 13, 16800876, 10.1186/1471-2229-6-13CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Dong Wei
    • 1
    Email author
  • Feng Chen
    • 2
  • Gu Chen
    • 1
  • XueWu Zhang
    • 1
  • LongJun Liu
    • 1
  • Hao Zhang
    • 3
  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina
  2. 2.School of Biological SciencesThe University of Hong KongHong Kong SARChina
  3. 3.College of Food SciencesJiangnan UniversityWuxiChina

Personalised recommendations