Science in China Series C: Life Sciences

, Volume 51, Issue 8, pp 693–701 | Cite as

Characterization of mitochondrial genome of Chinese wild mulberry silkworm, Bomyx mandarina (Lepidoptera: Bombycidae)

  • MinHui Pan
  • QuanYou Yu
  • YuLing Xia
  • FangYin Dai
  • YanQun Liu
  • Cheng Lu
  • Ze Zhang
  • ZhongHuai Xiang


The complete mitochondrial genome of Chinese Bombyx mandarina (ChBm) was determined. The circular genome is 15682 bp long, and contains a typical gene complement, order, and arrangement identical to that of Bombyx mori (B. mori) and Japanese Bombyx mandarina (JaBm) except for two additional tRNA-like structures: tRNASer(TGA)-like and tRNAIle(TAT)-like. All protein-coding sequences are initiated with a typical ATN codon except for the COI gene, which has a 4-bp TTAG putative initiator codon. Eleven of 13 protein-coding genes (PCGs) have a complete termination codon (all TAA), but the remaining two genes terminate with incomplete codons. All tRNAs have the typical clover-leaf structures of mitochondrial tRNAs, with the exception of tRNASer(TGA)-like, with a four stem-and-loop structure. The length of the A+T-rich region of ChBm is 484 bp, shorter than those of JaBm (747 bp) and B. mori (494–499 bp). Phylogenetic analysis among B. mori, ChBm, JaBm, and Antheraea pernyi (Anpe) showed that B. mori is more closely related to ChBm than JaBm. The earliest divergence time estimate for B. mori-ChBm and B. mori-JaBm is about 1.08±0.18–1.41±0.24 and 1.53±0.20–2.01±0.26 Mya, respectively. ChBm and JaBm diverged around 1.11±0.16–1.45±0.21 Mya.


Chinese Bombyx mandarina mtDNA phylogeny origin of Bombyx mori 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolstenholme D R. Animal mitochondrial DNA: Structure and evolution. Int Rev Cyt, 1992, 141: 173–216, 10.1016/S0074-7696(08)62066-5, 1:CAS:528:DyaK3sXkt1Wgs78%3DCrossRefGoogle Scholar
  2. 2.
    Junqueira A C. The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene, 2004, 339: 7–15, 15363841, 10.1016/j.gene.2004.06.031, 1:CAS:528:DC%2BD2cXnsVKjtb8%3DCrossRefPubMedGoogle Scholar
  3. 3.
    Cha S Y, Yoon H J, Lee E M, et al. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignites (Hymenoptera: Apidae). Gene, 2007, 392: 206–220, 17321076, 10.1016/j.gene.2006.12.031, 1:CAS:528:DC%2BD2sXjs1Cgsbg%3DCrossRefPubMedGoogle Scholar
  4. 4.
    Fauron C M R, Wolstenholme D R. Extensive diversity among Drosophila species with respective to nucleotide sequences within the adenine + thymine rich region of mitochondrial DNA molecules. Nucleic Acids Res, 1980, 11: 2439–2453, 10.1093/nar/8.11.2439CrossRefGoogle Scholar
  5. 5.
    Lewis D L, Farr C L, Kaguni L S. Drosophila melanogaster mitochondrial DNA, completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol, 1995, 4: 263–278, 8825764, 10.1111/j.1365-2583.1995.tb00032.x, 1:CAS:528:DyaK2MXhtVSitLrMCrossRefPubMedGoogle Scholar
  6. 6.
    Renfu S, Nick J H, Campbell H, et al. Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol, 2001, 18: 858–865CrossRefGoogle Scholar
  7. 7.
    Goldsmith M R, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol, 2005, 50: 71–100, 15355234, 10.1146/annurev.ento.50.071803.130456, 1:CAS:528:DC%2BD2MXhtFOqt7o%3DCrossRefPubMedGoogle Scholar
  8. 8.
    Sasaki C. On the affinity of our wild and domestic silkworms. Ann Zool Jpn, 1889, 2: 2Google Scholar
  9. 9.
    Banno Y, Nakamura T, Nagashima E, et al. M chromosome of the wild silkworm, Bombyx mandarina (n=27), corresponds to two chromosomes in the domestication silkworm, Bomby mori (n=28). Genome, 2004, 47: 96–101, 15060606, 10.1139/g03-112, 1:CAS:528:DC%2BD2cXivFGqsb8%3DCrossRefPubMedGoogle Scholar
  10. 10.
    Kawaguchi E. Zytologiche untersuchungen am seidenspinner und seinen verwandten. I. Gametogenes von Bombyx mori L. und B. mandarina M. und ihrer Bestarde. Z Zellforsch Mikrosk Anat, 1928, 7: 157–156, 10.1007/BF01264055CrossRefGoogle Scholar
  11. 11.
    Astaurov B L, Golisheva M D, Roginskaya I S. Chromosome complex of Ussuri geographical race of Bombyx mandarina M. with spacial reference to the problem of the origin of the domesticated silkworm, Bombyx mori L. Cytology (in Russian), 1959, 1: 327–332Google Scholar
  12. 12.
    Yukuhiro K, Sezutsu H, Itoh M, et al. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol, 2002, 19: 1385–1389, 12140251, 1:CAS:528:DC%2BD38XmtF2rs70%3DCrossRefPubMedGoogle Scholar
  13. 13.
    Arunkumar K P, Metta M, Nagaraju J. Molecular phylogeny of silkworm reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritiance of Antheraea proylei mitochondrial DNA. Mol Phylogenet Evol, 2006, 40:419–427, 16644243, 10.1016/j.ympev.2006.02.023, 1:CAS:528:DC%2BD28XntFWqsLw%3DCrossRefPubMedGoogle Scholar
  14. 14.
    Avise J C. Phylogeography: The History and Formation of Species. Cambridge: Harvard University Press, 2000Google Scholar
  15. 15.
    Moritz C, Dowling T E, Brown W M. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Ann Rev Ecol Syst, 1987, 18: 269–292, 10.1146/ Scholar
  16. 16.
    Pesole G, Gissi C, Saccone C. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol, 1999, 48: 427–434, 10079281, 10.1007/PL00006487, 1:CAS:528:DyaK1MXhvFyqu7w%3DCrossRefPubMedGoogle Scholar
  17. 17.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning, A Laboratory Manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989Google Scholar
  18. 18.
    Thomson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 24:173–216Google Scholar
  19. 19.
    Lowe T M, Eddy S R. tRNA-scan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25: 955–964, 9023104, 10.1093/nar/25.5.955, 1:CAS:528:DyaK2sXhvVahtrk%3DCrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Kumar S, Tamura K, Jakobsen I B, et al. MEGA 2: Molecular evolution genetics analysis software. Bioinformatics, 2001, 17:1244–1245, 11751241, 10.1093/bioinformatics/17.12.1244, 1:CAS:528:DC%2BD38XmtVCktQ%3D%3DCrossRefPubMedGoogle Scholar
  21. 21.
    Schmidt H A, Strimmer K, Vingron M, von Haseler A. TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 2002, 18: 502–504, 11934758, 10.1093/bioinformatics/18.3.502, 1:CAS:528:DC%2BD38XivFKrsL0%3DCrossRefPubMedGoogle Scholar
  22. 22.
    Adachi J, Hasegawa M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol, 1996, 42: 459–468, 8642615, 10.1007/BF02498640, 1:CAS:528:DyaK28XivFKnurw%3DCrossRefPubMedGoogle Scholar
  23. 23.
    Kumar M. A simple method for estimating evolution rate of base substitution through comparative studies of nucleotide sequence. J Mol Evol, 1980, 16: 111–120, 10.1007/BF01731581CrossRefGoogle Scholar
  24. 24.
    Zakharov E V, Caterino M S, Sperling F A. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst Biol, 2004, 53: 193–215, 15205049, 10.1080/10635150490423403CrossRefPubMedGoogle Scholar
  25. 25.
    Fu Y X, Li W H. Estimating the age of the common ancestor of a sample of DNA sequences. Mol Biol Evol, 1997, 14: 195–199, 9029798, 1:CAS:528:DyaK2sXhtVKhurc%3DCrossRefPubMedGoogle Scholar
  26. 26.
    Shao R, Barker S C. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): Convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol, 2003, 20: 362–370, 12644556, 10.1093/molbev/msg045, 1:CAS:528:DC%2BD3sXisFaqs78%3DCrossRefPubMedGoogle Scholar
  27. 27.
    Thao M L, Baumann L, Baumann P. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol, 2004, 4: 25, 15291971, 10.1186/1471-2148-4-25, 1:CAS:528:DC%2BD2cXnsF2qsLw%3DCrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Zhang D X, Hewitt G M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. BiochemSyst Ecol, 1997, 25: 99–120, 10.1016/S0305-1978(96)00042-7CrossRefGoogle Scholar
  29. 29.
    Lu C, Liu Y Q, Liao S Y, et al. Complete sequence dternination and analysis of Bombyx mori mitochondrial genome. J Agric Biotechnol (in Chinese), 2002, 10: 163–170Google Scholar
  30. 30.
    Yamauchi Y, Hoeffer C, Yamamoto A, et al. cDNA and deduced amino acid sequences of apolipophorin-IIIs from Bombyx mori and Bombyx mandarina. Arch Insect Biochem Physiol, 2000, 43: 16–21, 10613959, 10.1002/(SICI)1520-6327(200001)43:1<16::AID-ARCH3>3.0.CO;2-W, 1:CAS:528:DC%2BD3cXkt1SltQ%3D%3DCrossRefPubMedGoogle Scholar
  31. 31.
    Li A, Zhao Q, Tang S, et al. Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. J Genet, 2005, 84: 137–142, 16131713, 10.1007/BF02715839, 1:CAS:528:DC%2BD2MXhtFSkt77ECrossRefPubMedGoogle Scholar
  32. 32.
    Maekawa H, Takada N, Mikitani K, et al. Nucleolus organizers in the wild silkworm Bombyx mandarina and domesticated silkworm B. mori. Chromosoma, 1988, 96: 263–269, 10.1007/BF00286912, 1:CAS:528:DyaL1cXktVWktLk%3DCrossRefGoogle Scholar
  33. 33.
    Nakamura T, Banno Y, Nakada T, et al. Geographic dimorphism of the wild silkworm, Bombyx mandarina, in the chromosome number and the occurrence of a retroposon-like insertion in the arylphorin gene. Genome, 1999, 42: 1117–1120, 10659778, 10.1139/gen-42-6-1117, 1:CAS:528:DC%2BD3cXpt12rsA%3D%3DCrossRefPubMedGoogle Scholar
  34. 34.
    Shimada T, Kurimoto Y, Kobayashi M. Phylogenetic relationship of silkmoths inferred from sequence data of the arylphorin gene. Mol Phylogenet Evol, 1995, 4: 223–234, 8845960, 10.1006/mpev.1995.1021, 1:CAS:528:DyaK2MXptFShtbg%3DCrossRefPubMedGoogle Scholar
  35. 35.
    Zhou Y. General Entomology (in Chinese). 2nd ed. Beijing: High Education Publication House, 1958Google Scholar
  36. 36.
    Oshima K. The history of straits around the Japanese Islands in the late-quaternary. Quaternary Res, 1990, 29: 193–208CrossRefGoogle Scholar
  37. 37.
    Matsui H, Tada R, Oba T. Low-salinity isolation event in the Japan Sea in response to eustatic sea-level drop during LGM: Reconstruction based on salinity-balance model. Quaternary Res, 1998, 37:221–233, 10.4116/jaqua.37.221CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • MinHui Pan
    • 1
  • QuanYou Yu
    • 1
  • YuLing Xia
    • 1
  • FangYin Dai
    • 1
  • YanQun Liu
    • 2
  • Cheng Lu
    • 1
  • Ze Zhang
    • 1
  • ZhongHuai Xiang
    • 1
  1. 1.Key Sericultural Laboratory of Agricultural MinistrySouthwest UniversityChongqingChina
  2. 2.College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangChina

Personalised recommendations