Advertisement

Science in China Series C: Life Sciences

, Volume 51, Issue 6, pp 479–486 | Cite as

Cilia and ciliopathies: From Chlamydomonas and beyond

  • JunMin PanEmail author
Article

Abstract

The biological function of motile cilia/flagella has long been recognized. The non-motile primary cilium, once regarded as a vestigial organelle, however, has been found recently to play unexpected roles in mammalian physiology and development. Defects in cilia have profound impact on human health. Diseases related to cilia, collectively called ciliopathies include male infertility, primary cilia dyskinesia, renal cyst formation, blindness, polydactyly, obesity, hypertension, and even mental retardation. Our current understanding of cilia and ciliopathies has been fueled by basic research employing various model organisms including Chlamydomonas, a unicellular green alga. This review article provides a general introduction to the cell biology of cilia and an overview of various cilia-related diseases.

Keywords

Chlamydomonas cilia flagellla human disease ciliopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silflow C D, Lefebvre P A. Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol, 2001, 127: 1500–1507, 11743094, 10.1104/pp.127.4.1500, 1:CAS:528:DC%2BD38XjtVWgtQ%3D%3DCrossRefGoogle Scholar
  2. 2.
    Brokaw C J, Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton, 1987, 8: 68–75, 2958145, 10.1002/cm.970080110, 1:STN:280:BieD3c3jvVw%3DCrossRefGoogle Scholar
  3. 3.
    Porter M E, Sale W S. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol, 2000, 151: 37–42, 10.1083/jcb.151.5.F37CrossRefGoogle Scholar
  4. 4.
    Dentler W L. Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci, 1980, 42: 207–220, 6772653, 1:STN:280:Bi%2BB2cbntVA%3DGoogle Scholar
  5. 5.
    Sloboda R D. Intraflagellar transport and the flagellar tip complex. J Cell Biochem, 2005, 94: 266–272, 15558569, 10.1002/jcb.20323, 1:CAS:528:DC%2BD2MXpsFegsA%3D%3DCrossRefGoogle Scholar
  6. 6.
    Rosenbaum J L, Witman G B. Intraflagellar transport. Nat Rev Mol Cell Biol, 2002, 3: 813–825, 12415299, 10.1038/nrm952, 1:CAS:528:DC%2BD38Xotlerur0%3DCrossRefGoogle Scholar
  7. 7.
    Sanders M A, Salisbury J L. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol, 1989, 108: 1751–1760, 2654141, 10.1083/jcb.108.5.1751, 1:CAS:528:DyaL1MXhvV2gs74%3DCrossRefGoogle Scholar
  8. 8.
    Dutcher S K. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic, 2003, 4: 443–451, 12795689, 10.1034/j.1600-0854.2003.00104.x, 1:CAS:528:DC%2BD3sXltFektLY%3DCrossRefGoogle Scholar
  9. 9.
    Zariwala M A, Knowles M R, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol, 2007, 69: 423–450, 17059358, 10.1146/annurev.physiol.69.040705.141301, 1:CAS:528:DC%2BD2sXltVaksLo%3DCrossRefGoogle Scholar
  10. 10.
    Afzelius B A. The immotile-cilia syndrome and other ciliary diseases. Int Rev Exp Pathol, 1979, 19: 1–43, 156703, 1:STN:280:CSaB3MrlsVQ%3DGoogle Scholar
  11. 11.
    Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998, 95: 829–837, 9865700, 10.1016/S0092-8674(00)81705-5, 1:CAS:528:DyaK1MXivVKnCrossRefGoogle Scholar
  12. 12.
    Marszalek J R, Liu X, Roberts E A, et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell, 2000, 102: 175–187, 10943838, 10.1016/S0092-8674(00)00023-4, 1:CAS:528:DC%2BD3cXltl2hsro%3DCrossRefGoogle Scholar
  13. 13.
    Menco B P. Ultrastructural aspects of olfactory signaling. Chem Senses, 1997, 22: 295–311, 9218142, 10.1093/chemse/22.3.295, 1:STN:280:ByiA287isVw%3DCrossRefGoogle Scholar
  14. 14.
    Sobkowicz H M, Slapnick S M, August B K. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol, 1995, 24: 633–653, 7500120, 10.1007/BF01179815, 1:STN:280:BymC3c%2Fis1M%3DCrossRefGoogle Scholar
  15. 15.
    Axelrod J D. Basal bodies, kinocilia and planar cell polarity. Nat Genet, 2008, 40: 10–11, 18163128, 10.1038/ng0108-10, 1:CAS:528:DC%2BD1cXhtVyktg%3D%3DCrossRefGoogle Scholar
  16. 16.
    Schneider L, Clement C A, Teilmann S C, et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol, 2005, 15: 1861–1866, 16243034, 10.1016/j.cub.2005.09.012, 1:CAS:528:DC%2BD2MXhtFCjsL%2FJCrossRefGoogle Scholar
  17. 17.
    Rohatgi R, Milenkovic L, Scott M P. Patched1 regulates hedgehog signaling at the primary cilium. Science, 2007, 317: 372–376, 17641202, 10.1126/science.1139740, 1:CAS:528:DC%2BD2sXnslGrs70%3DCrossRefGoogle Scholar
  18. 18.
    Huangfu D, Liu A, Rakeman A S, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 2003, 426: 83–87, 14603322, 10.1038/nature02061, 1:CAS:528:DC%2BD3sXoslSjtbw%3DCrossRefGoogle Scholar
  19. 19.
    Liu A, Wang B, Niswander L A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 2005, 132: 3103–3111, 15930098, 10.1242/dev.01894, 1:CAS:528:DC%2BD2MXnvVWmt7Y%3DCrossRefGoogle Scholar
  20. 20.
    Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet, 2005, 37: 537–543, 15852005, 10.1038/ng1552, 1:CAS:528:DC%2BD2MXjsF2ks7s%3DCrossRefGoogle Scholar
  21. 21.
    Ross A J, May-Simera H, Eichers E R, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet, 2005, 37: 1135–1140, 16170314, 10.1038/ng1644, 1:CAS:528:DC%2BD2MXhtVCntL%2FKCrossRefGoogle Scholar
  22. 22.
    Jones C, Roper V C, Foucher I, et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet, 2008, 40: 69–77, 18066062, 10.1038/ng.2007.54, 1:CAS:528:DC%2BD1cXhtVykuw%3D%3DCrossRefGoogle Scholar
  23. 23.
    Nauli S M, Alenghat F J, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet, 2003, 33: 129–137, 12514735, 10.1038/ng1076, 1:CAS:528:DC%2BD3sXnsFSksw%3D%3DCrossRefGoogle Scholar
  24. 24.
    Pazour G J, Witman G B. The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol, 2003, 15: 105–110, 12517711, 10.1016/S0955-0674(02)00012-1, 1:CAS:528:DC%2BD3sXotVOgCrossRefGoogle Scholar
  25. 25.
    Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol, 1962, 15: 363–377, 13978319, 10.1083/jcb.15.2.363, 1:STN:280:CC2C2s%2Fht1M%3DCrossRefGoogle Scholar
  26. 26.
    Sorokin S P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci, 1968, 3: 207–230, 5661997, 1:STN:280:CCeA38ngsF0%3DGoogle Scholar
  27. 27.
    Hagiwara H, Ohwada N, Aoki T, et al. Ciliogenesis and ciliary abnormalities. Med Electron Microsc, 2000, 33: 109–114, 11810467, 10.1007/s007950000009, 1:STN:280:DC%2BD38%2Foslynug%3D%3DCrossRefGoogle Scholar
  28. 28.
    Dawe H R, Farr H, Gull K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci, 2007, 120: 7–15, 17182899, 10.1242/jcs.03305, 1:CAS:528:DC%2BD2sXht1Gmsrk%3DCrossRefGoogle Scholar
  29. 29.
    Pan J, Snell W. The primary cilium: Keeper of the key to cell division. Cell, 2007, 129: 1255–1257, 17604715, 10.1016/j.cell.2007.06.018, 1:CAS:528:DC%2BD2sXotV2hs7o%3DCrossRefGoogle Scholar
  30. 30.
    Pan J, Wang Q, Snell W J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell, 2004, 6: 445–451, 15030766, 10.1016/S1534-5807(04)00064-4, 1:CAS:528:DC%2BD2cXis1KmsLs%3DCrossRefGoogle Scholar
  31. 31.
    Pan J, Snell W J. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell, 2005, 9: 431–438, 16139231, 10.1016/j.devcel.2005.07.010, 1:CAS:528:DC%2BD2MXhtVert7%2FNCrossRefGoogle Scholar
  32. 32.
    Wloga D, Camba A, Rogowski K, et al. Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell, 2006, 17: 2799–2810, 16611747, 10.1091/mbc.E05-05-0450, 1:CAS:528:DC%2BD28XlvVCisL4%3DCrossRefGoogle Scholar
  33. 33.
    Pugacheva E N, Jablonski S A, Hartman T R, et al. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell, 2007, 129: 1351–1363, 17604723, 10.1016/j.cell.2007.04.035, 1:CAS:528:DC%2BD2sXotV2hsL0%3DCrossRefGoogle Scholar
  34. 34.
    Kozminski K G, Johnson K A, Forscher P, et al. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA, 1993, 90: 5519–5523, 8516294, 10.1073/pnas.90.12.5519, 1:STN:280:ByyB1Mnhs10%3DCrossRefGoogle Scholar
  35. 35.
    Iomini C, Babaev-Khaimov V, Sassaroli M, et al. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol, 2001, 153: 13–24, 11285270, 10.1083/jcb.153.1.13, 1:CAS:528:DC%2BD3MXisVyhtL4%3DCrossRefGoogle Scholar
  36. 36.
    Mueller J, Perrone C A, Bower R, et al. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell, 2005, 16: 1341–1354, 15616187, 10.1091/mbc.E04-10-0931, 1:CAS:528:DC%2BD2MXit1Srt7Y%3DCrossRefGoogle Scholar
  37. 37.
    Snow J J, Ou G, Gunnarson A L, et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol, 2004, 6: 1109–1113, 15489852, 10.1038/ncb1186, 1:CAS:528:DC%2BD2cXptFentLo%3DCrossRefGoogle Scholar
  38. 38.
    Follit J A, Tuft R A, Fogarty K E, et al. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell, 2006, 17: 3781–3792, 16775004, 10.1091/mbc.E06-02-0133, 1:CAS:528:DC%2BD28Xpt1alur0%3DCrossRefGoogle Scholar
  39. 39.
    Cole D G, Diener D R, Himelblau A L, et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol, 1998, 141: 993–1008, 9585417, 10.1083/jcb.141.4.993, 1:CAS:528:DyaK1cXjt1Kntb4%3DCrossRefGoogle Scholar
  40. 40.
    Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA, 1997, 94: 4457–4462, 9114011, 10.1073/pnas.94.9.4457, 1:CAS:528:DyaK2sXjtVyrtbk%3DCrossRefGoogle Scholar
  41. 41.
    Cole D G. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic, 2003, 4: 435–442, 12795688, 10.1034/j.1600-0854.2003.t01-1-00103.x, 1:CAS:528:DC%2BD3sXltFektLk%3DCrossRefGoogle Scholar
  42. 42.
    Qin H, Diener D R, Geimer S, et al. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol, 2004, 164: 255–266, 14718520, 10.1083/jcb.200308132, 1:CAS:528:DC%2BD2cXmsV2isg%3D%3DCrossRefGoogle Scholar
  43. 43.
    Pazour G J, Dickert B L, Witman G B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol, 1999, 144: 473–481, 9971742, 10.1083/jcb.144.3.473, 1:CAS:528:DyaK1MXhtFGru7s%3DCrossRefGoogle Scholar
  44. 44.
    Pazour G J, Dickert B L, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol, 2000, 151: 709–718, 11062270, 10.1083/jcb.151.3.709, 1:CAS:528:DC%2BD3cXnsl2lsbg%3DCrossRefGoogle Scholar
  45. 45.
    Davidge J A, Chambers E, Dickinson H A, et al. Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci, 2006, 119: 3935–3943, 16954145, 10.1242/jcs.03203, 1:CAS:528:DC%2BD2sXit1Cgtw%3D%3DCrossRefGoogle Scholar
  46. 46.
    Tsao C C, Gorovsky M A. Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell, 2008, 19: 1450–1461, 18199688, 10.1091/mbc.E07-05-0403CrossRefGoogle Scholar
  47. 47.
    Scholey J M. Intraflagellar transport. Annu Rev Cell Dev Biol, 2003, 19: 423–443, 14570576, 10.1146/annurev.cellbio.19.111401.091318, 1:CAS:528:DC%2BD3sXpsFamt7g%3DCrossRefGoogle Scholar
  48. 48.
    Kramer-Zucker A G, Olale F, Haycraft C J, et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development, 2005, 132: 1907–1921, 15790966, 10.1242/dev.01772, 1:CAS:528:DC%2BD2MXktlShsLs%3DCrossRefGoogle Scholar
  49. 49.
    Tsujikawa M, Malicki J. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron, 2004, 42: 703–716, 15182712, 10.1016/S0896-6273(04)00268-5, 1:CAS:528:DC%2BD2cXlslWhtbg%3DCrossRefGoogle Scholar
  50. 50.
    Pazour G J, Baker S A, Deane J A, et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol, 2002, 157: 103–113, 11916979, 10.1083/jcb.200107108, 1:CAS:528:DC%2BD38Xis1KnsLY%3DCrossRefGoogle Scholar
  51. 51.
    Pan J, Snell W J. Signal transduction during fertilization in the unicellular green alga, Chlamydomonas. Curr Opin Microbiol, 2000, 3: 596–602, 11121779, 10.1016/S1369-5274(00)00146-6, 1:CAS:528:DC%2BD3MXis1amsA%3D%3DCrossRefGoogle Scholar
  52. 52.
    Pazour G J, Agrin N, Leszyk J, et al. Proteomic analysis of a eukaryotic cilium. J Cell Biol, 2005, 170: 103–113, 15998802, 10.1083/jcb.200504008, 1:CAS:528:DC%2BD2MXlvFCnsrg%3DCrossRefGoogle Scholar
  53. 53.
    Tam L W, Lefebvre P A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics, 1993, 135: 375–384, 8244002, 1:CAS:528:DyaK2cXlt1Khur8%3DGoogle Scholar
  54. 54.
    Pennarun G, Escudier E, Chapelin C, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet, 1999, 65: 1508–1519, 10577904, 10.1086/302683, 1:CAS:528:DC%2BD3cXjvFentQ%3D%3DCrossRefGoogle Scholar
  55. 55.
    Wheatley D N, Wang A M, Strugnell G E. Expression of primary cilia in mammalian cells. Cell Biol Int, 1996, 20: 73–81, 8936410, 10.1006/cbir.1996.0011, 1:STN:280:ByiD1M%2FltVY%3DCrossRefGoogle Scholar
  56. 56.
    Storm van’s Gravesande K, Omran H. Primary ciliary dyskinesia: Clinical presentation, diagnosis and genetics. Ann Med, 2005, 37: 439–449, 16203616, 10.1080/07853890510011985CrossRefGoogle Scholar
  57. 57.
    Cowan M J, Gladwin M T, Shelhamer J H. Disorders of ciliary motility. Am J Med Sci, 2001, 321: 3–10, 11202477, 10.1097/00000441-200101000-00002, 1:STN:280:DC%2BD3M7hvVyqsQ%3D%3DCrossRefGoogle Scholar
  58. 58.
    Ibanez-Tallon I, Pagenstecher A, Fliegauf M, et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet, 2004, 13: 2133–2141, 15269178, 10.1093/hmg/ddh219, 1:CAS:528:DC%2BD2cXnsVyisrc%3DCrossRefGoogle Scholar
  59. 59.
    Adams N A, Awadein A, Toma H S. The retinal ciliopathies. Ophthalmic Genet, 2007, 28: 113–125, 17896309, 10.1080/13816810701537424, 1:CAS:528:DC%2BD2sXht1amtLrPCrossRefGoogle Scholar
  60. 60.
    Afzelius B A. Cilia-related diseases. J Pathol, 2004, 204: 470–477, 15495266, 10.1002/path.1652, 1:CAS:528:DC%2BD2cXhtVCgsrjPCrossRefGoogle Scholar
  61. 61.
    Kulaga H M, Leitch C C, Eichers E R, et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet, 2004, 36: 994–998, 15322545, 10.1038/ng1418, 1:CAS:528:DC%2BD2cXntFSku7o%3DCrossRefGoogle Scholar
  62. 62.
    Williams D S. Usher syndrome: Animal models, retinal function of Usher proteins, and prospects for gene therapy. Vision Res, 2008, 48: 433–441, 17936325, 10.1016/j.visres.2007.08.015, 1:CAS:528:DC%2BD1cXhtlOmtL0%3DCrossRefGoogle Scholar
  63. 63.
    Witzgall R. New developments in the field of cystic kidney diseases. Curr Mol Med, 2005, 5: 455–465, 16101475, 10.2174/1566524054553496, 1:CAS:528:DC%2BD2MXmvVyktLk%3DCrossRefGoogle Scholar
  64. 64.
    Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol, 2007, 18: 1855–1871, 17513324, 10.1681/ASN.2006121344, 1:CAS:528:DC%2BD2sXnt1Wjs7g%3DCrossRefGoogle Scholar
  65. 65.
    Beales P L. Lifting the lid on Pandora’s box: The Bardet-Biedl syndrome. Curr Opin Genet Dev, 2005, 15: 315–323, 15917208, 10.1016/j.gde.2005.04.006, 1:CAS:528:DC%2BD2MXks1Gjsb8%3DCrossRefGoogle Scholar
  66. 66.
    Ou G, Blacque O E, Snow J J, et al. Functional coordination of intraflagellar transport motors. Nature, 2005, 436: 583–587, 16049494, 10.1038/nature03818, 1:CAS:528:DC%2BD2MXmsFCgsL4%3DCrossRefGoogle Scholar
  67. 67.
    Nachury M V, Loktev A V, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 2007, 129: 1201–1213, 17574030, 10.1016/j.cell.2007.03.053, 1:CAS:528:DC%2BD2sXntVOnt7Y%3DCrossRefGoogle Scholar
  68. 68.
    Li G, Vega R, Nelms K, et al. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet, 2007, 3: e8, 17206865, 10.1371/journal.pgen.0030008CrossRefGoogle Scholar
  69. 69.
    Dawe H R, Smith U M, Cullinane A R, et al. The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet, 2007, 16: 173–186, 17185389, 10.1093/hmg/ddl459, 1:CAS:528:DC%2BD2sXhtVKktrc%3DCrossRefGoogle Scholar
  70. 70.
    Ferrante M I, Zullo A, Barra A, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet, 2006, 38: 112–117, 16311594, 10.1038/ng1684, 1:CAS:528:DC%2BD2MXhtlCmtr7ECrossRefGoogle Scholar
  71. 71.
    Arts H H, Doherty D, van Beersum S E, et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet, 2007, 39: 882–888, 17558407, 10.1038/ng2069, 1:CAS:528:DC%2BD2sXmvFKlsLs%3DCrossRefGoogle Scholar
  72. 72.
    Otto E A, Loeys B, Khanna H, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet, 2005, 37: 282–288, 15723066, 10.1038/ng1520, 1:CAS:528:DC%2BD2MXhsFOqu7k%3DCrossRefGoogle Scholar
  73. 73.
    Sayer J A, Otto E A, O’Toole J F, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet, 2006, 38: 674–681, 16682973, 10.1038/ng1786, 1:CAS:528:DC%2BD28XltVOhtb0%3DCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Biological Sciences and BiotechnologyTsinghua UniversityBeijingChina

Personalised recommendations