Science in China Series C: Life Sciences

, Volume 51, Issue 6, pp 487–494 | Cite as

Recent progress on the structure of Ser/Thr protein phosphatases



PP1, PP2A and PP2B, belonging to the PPP family of Ser/Thr protein phosphatases, participate in regulating many important physiological processes, such as cell cycle control, regulation of cell growth and division regulation, etc. The sequence homology between them is relatively high, and tertiary structure is conserved. Because of the complexity of the structure of PP2A and the diversity of its regulatory subunits, its structure is less well known than those of PP1 and PP2B. The PP2A holoenzyme consists of a heterodimeric core enzyme, comprising a scaffolding subunit and a catalytic subunit, as well as a variable regulatory subunit. In this study, the subunit compositions, similarities and differences between the Ser/Thr protein phsphatases structures are summarized.


Ser/Thr phosphatases subunit composition similarities and differences crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toole B J, Cohen P T. The skeletal muscle-specific glycogen-targeted protein phosphatase 1 plays a major role in the regulation of glycogen metabolism by adrenaline in vivo. Cell Signal, 2007, 19(5): 1044–1055, 17257813, 10.1016/j.cellsig.2006.11.013, 1:CAS:528:DC%2BD2sXjsVSru7w%3DCrossRefGoogle Scholar
  2. 2.
    Lauwaet T, Davids B J, Torres-Escobar A, et al. Protein phosphatase 2A play a crucial role in Giardia differentiation. Mol Biochem Parasitology, 2007, 152(1): 80–89, 10.1016/j.molbiopara.2006.12.001, 1:CAS:528:DC%2BD2sXnslGlsg%3D%3DCrossRefGoogle Scholar
  3. 3.
    Klee C B, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem, 1998, 273(22): 13367–13370, 9593662, 10.1074/jbc.273.22.13367, 1:CAS:528:DyaK1cXjvVejsLs%3DCrossRefGoogle Scholar
  4. 4.
    Terrak M, Kerff F, Langsetmo K, et al. Structure basis of protein phosphatase 1 regulation. Nature, 2004, 429(17): 780–784, 15164081, 10.1038/nature02582, 1:CAS:528:DC%2BD2cXkvVOjt7s%3DCrossRefGoogle Scholar
  5. 5.
    Andreassen P R, Lacroix F B, Moruzzi V E, et al. Differential subcellular localization of protein phosphatase-1 alpha, gammal and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol, 1998, 141(5): 1207–1215, 9606212, 10.1083/jcb.141.5.1207, 1:CAS:528:DyaK1cXjs12ntLc%3DCrossRefGoogle Scholar
  6. 6.
    Hemmings B A, Adams-Pearson C, Maurer F, et al. alpha-and beta-forms of the 65-kDa subunit of protein phosphatase2A have a similar 39 amino acid repeating structure. Biochemistry, 1990, 29(13): 3166–3173, 2159327, 10.1021/bi00465a002, 1:CAS:528:DyaK3cXitlWrs7g%3DCrossRefGoogle Scholar
  7. 7.
    Janssens V, Goris J. Protein phosphatase2A: A highly regulated family of serine/threonine phosphatases implicated inc ell growth and signaling. Biochem J, 2001, 353(3): 417–439, 11171037, 10.1042/0264-6021:3530417, 1:CAS:528:DC%2BD3MXhtlOrs70%3DCrossRefGoogle Scholar
  8. 8.
    Rusnak F, Mertz P. Calcineurin: Form and function. Physiological Rev, 2000, 80(4): 1483–1521, 1:CAS:528:DC%2BD3cXnsVKisLk%3DGoogle Scholar
  9. 9.
    Xing Y N, Xu Y H, Chen Y, et al. Structure of proteinphosphatase2A core enzyme bound to tumor-inducing toxins. Cell, 2006, 127(20): 341–353, 17055435, 10.1016/j.cell.2006.09.025, 1:CAS:528:DC%2BD28XhtFOkt73KCrossRefGoogle Scholar
  10. 10.
    Cho U S, Xu W Q. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 2006, 445(1): 53–57, 17086192, 10.1038/nature05351Google Scholar
  11. 11.
    Egloff M P, Cohen P T W, Reinemer P, et al. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol, 1995, 254(5): 942–959, 7500362, 10.1006/jmbi.1995.0667, 1:CAS:528:DyaK28XhtV2itA%3D%3DCrossRefGoogle Scholar
  12. 12.
    Goldberg J, Huang H B, Kwon Y G, et al. Three dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature, 1995, 376(31): 745–753, 7651533, 10.1038/376745a0, 1:CAS:528:DyaK2MXnvFChs7w%3DCrossRefGoogle Scholar
  13. 13.
    Maynes J T, Bateman K S, Cherney M M, et al. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J Biol Chem, 2001, 276(47): 44078–44882, 11535607, 10.1074/jbc.M107656200, 1:CAS:528:DC%2BD3MXos12ntb8%3DCrossRefGoogle Scholar
  14. 14.
    Gibbons J A, Weiser D C, Shenolikar S. Importance of a surface hydrophobic pocket on protein phosphatase-1 catalytic subunit in recognizing cellular regulators. J Biol Chem, 2005, 280(16): 15903–15911, 15703180, 10.1074/jbc.M500871200, 1:CAS:528:DC%2BD2MXjtleisbs%3DCrossRefGoogle Scholar
  15. 15.
    Xie X J, Huang W, Xue C Z, et al. The β12–β13 loop is a key regulatory element for activity and property in the catalytic domain of protein phosphatase 1 and 2B. Biol Chem, 2006, 387(10): 1461–1467, 17081120, 10.1515/BC.2006.183, 1:CAS:528:DC%2BD28XhtFygtLnEGoogle Scholar
  16. 16.
    Maynes J T, Luu H A, Cherney M M, et al. Crystal structure of protein phosphatase-1 bound to Motuporin and Dihydromicrocystin-LA: Elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins. J Mol Biol, 2006, 356(10): 111–120, 16343532, 10.1016/j.jmb.2005.11.019, 1:CAS:528:DC%2BD28XjvVOguw%3D%3DCrossRefGoogle Scholar
  17. 17.
    Groves M R, Hanlon N, Turowski P, et al. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell, 1999, 96(1): 99–110, 9989501, 10.1016/S0092-8674(00)80963-0, 1:CAS:528:DyaK1MXmslagug%3D%3DCrossRefGoogle Scholar
  18. 18.
    Xu Y H, Xing Y N, Chen Y, et al. Structure of the protein phosphatase2A holoenzyme. Cell, 2006, 127(15): 1239–1251, 17174897, 10.1016/j.cell.2006.11.033, 1:CAS:528:DC%2BD2sXhs1ensA%3D%3DCrossRefGoogle Scholar
  19. 19.
    Griffith J P, Kim J L, Kim E E, et al. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell, 1995, 82(11): 507–522, 7543369, 10.1016/0092-8674(95)90439-5, 1:CAS:528:DyaK2MXnsFSgtrY%3DCrossRefGoogle Scholar
  20. 20.
    Kissinger C R, Parge H E, Knighton D R, et al. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature, 1995, 378(7): 641–644, 8524402, 10.1038/378641a0, 1:CAS:528:DyaK2MXpvVChsbc%3DCrossRefGoogle Scholar
  21. 21.
    Qing H, Kim H Y, Liu Y D, et al. Crystal structure of calcineurincyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc Natl Acad Sci USA, 2002, 99(17): 12037–12042Google Scholar
  22. 22.
    Jin L, Harrison S C. Crystal structure of human calcineurin complexed with cyclosporine and human cyclophilin. Proc Natl Acad Sci USA, 2002, 99(15): 13522–13526, 12357034, 10.1073/pnas.212504399, 1:CAS:528:DC%2BD38XotVKms7c%3DCrossRefGoogle Scholar
  23. 23.
    Ke H M, Huai Q. Structures of calcineurin and its complexes with immunophilins-immunosuppressants. Biochem Biophys Res Commun, 2003, 311(4): 1095–1102, 14623295, 10.1016/S0006-291X(03)01537-7, 1:CAS:528:DC%2BD3sXovVeit74%3DCrossRefGoogle Scholar
  24. 24.
    Takeuchi K, Roehrl M H, Sun Z Y, et al. Structure of the calcineurin-NFAT complex: Defining a T cell activation switch using solution NMR and crystal coordinates. Structure, 2007, 15(5): 587–597, 17502104, 10.1016/j.str.2007.03.015, 1:CAS:528:DC%2BD2sXlt1aitbo%3DCrossRefGoogle Scholar
  25. 25.
    Hou Q, Yi X, Jiang G H, Wei Q. The salt bridge of calcineurin is important for transferring the effect of CNB binding to CAN. FEBS Lett, 2004, 577(1): 294–298, 15527802, 10.1016/j.febslet.2004.10.002, 1:CAS:528:DC%2BD2cXpsFert7Y%3DCrossRefGoogle Scholar
  26. 26.
    Tokoyoda K, Takemoto Y, Nakayama T, et al. Synergism between the calmodulin-binding and autoinhibitory domains on calcineurin is essential for the induction of their phosphatase activity. J Biol Chem, 2000, 275(16): 11728–11735, 10766794, 10.1074/jbc.275.16.11728, 1:CAS:528:DC%2BD3cXisl2jsrY%3DCrossRefGoogle Scholar
  27. 27.
    Ye Q L, Li X, Wong A, et al. Structure of calmodulin bound to a calcineurin peptide: A new way of making an old binding mode. Biochemistry, 2006, 45: 738–745, 16411749, 10.1021/bi0521801, 1:CAS:528:DC%2BD2MXhtlars7zLCrossRefGoogle Scholar
  28. 28.
    Winder D G, Sweatt J D. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci, 2001, 2: 461–474, 11433371, 10.1038/35081514, 1:CAS:528:DC%2BD3MXlslGisbo%3DCrossRefGoogle Scholar
  29. 29.
    Sakagami H, Ebina K, Kondo H. Localization of phosphatase inhibitor-1 mRNA in the developing and adult rat brain in comparison with that of protein phosphatase-1 mRNAs. Brain Res Mol Brain Res, 1994, 25: 7–18, 7984054, 10.1016/0169-328X(94)90273-9, 1:CAS:528:DyaK2cXmsFaiur4%3DCrossRefGoogle Scholar
  30. 30.
    Ouimet C C, Langley-Gullion K C, Greengard P. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res, 1998, 808: 8–12, 9795103, 10.1016/S0006-8993(98)00724-0, 1:CAS:528:DyaK1cXms1SrtLc%3DCrossRefGoogle Scholar
  31. 31.
    Shenolikar S, Nairn A C. Protein phosphatases: Recent progress. Adv Second Messenger Phosphoprotein Res, 1991, 23: 1–121, 1847640, 1:STN:280:By6C2cvovFM%3DGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyBeijing Normal University, Beijing Key LaboratoryBeijingChina
  2. 2.School of Life ScienceChangchun Normal UniversityChangchunChina

Personalised recommendations