Advertisement

Science in China Series C: Life Sciences

, Volume 49, Issue 4, pp 332–341 | Cite as

Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers

  • Qu Lujiang 
  • Li Xianyao 
  • Xu Guifang 
  • Chen Kuanwei 
  • Yang Hongjie 
  • Zhang Longchao 
  • Wu Guiqin 
  • Hou Zhuocheng 
  • Xu Guiyun 
  • Yang Ning 
Article

Abstract

China is rich in chicken genetic resources, and many indigenous breeds can be found throughout the country. Due to poor productive ability, some of them are threatened by the commercial varieties from domestic and foreign breeding companies. In a large-scale investigation into the current status of Chinese poultry genetic resources, 78 indigenous chicken breeds were surveyed and their blood samples collected. The genomes of these chickens were screened using microsatellite analysis. A total of 2740 individuals were genotyped for 27 microsatellite markers on 13 chromosomes. The number of alleles of the 27 markers ranged from 6 to 51 per locus with a mean of 18.74. Heterozygosity (H) values of the 78 chicken breeds were all more than 0.5. The average H value (0.622) and polymorphism information content (PIC, 0.573) of these breeds suggested that the Chinese indigenous chickens possessed more genetic diversity than that reported in many other countries. The fixation coefficients of subpopulations within the total population (F ST) for the 27 loci varied from 0.065 (LEI0166) to 0.209 (MCW0078), with a mean of 0.106. For all detected microsatellite loci, only one (LEI0194) deviated from Hardy-Weinberg equilibrium (HWE) across all the populations. As genetic drift or non-random mating can occur in small populations, breeds kept on conservation farms such as Langshan chicken generally had lower H values, while those kept on large populations within conservation regions possessed higher polymorphisms. The high genetic diversity in Chinese indigenous breeds is in agreement with great phenotypic variation of these breeds. Using Nei’s genetic distance and the Neighbor-Joining method, the indigenous Chinese chickens were classified into six categories that were generally consistent with their geographic distributions. The molecular information of genetic diversity will play an important role in conservation, supervision, and utilization of the chicken resources.

Keywords

chicken breeds China genetic diversity heterozygosity microsatellite marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    West B, Zhou B X. Did chickens go north? New evidence for domestication. J Arch Sci, 1988, 14: 515–533CrossRefGoogle Scholar
  2. 2.
    Fulton J E, Delany M E. Poultry genetic resources-operation rescue needed. Science, 2003, 300: 1667–1668PubMedCrossRefGoogle Scholar
  3. 3.
    Buchanan F C, Adams L J, Littlejohn R P, Maddox J F, Crawford A M. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics, 1994, 22: 397–403PubMedCrossRefGoogle Scholar
  4. 4.
    MacHugh E, Lofftus R T, Barley D G, Sharp P M, Cunningham P. Microsatellite DNA variation within and among European cattle breeds. Proc Roy Soc Biol Sci, 1994, 256: 25–31Google Scholar
  5. 5.
    Romanov M N, Weigends S. Genetic diversity in chicken populations based on microsatellite markers. In: Dekkers J C M, Lamont S, Rothschild M F, eds. Proc. of the Conference “From Jay Lush to Genomics: Visions for Animal Breeding and Genetics”. Ames: Iowa State University, 1999. 174Google Scholar
  6. 6.
    Crooijmans R P M A, Groen A F, van Kampen A J A, van der Beek S, Van der Poel J J, Groenen M A M. Microsatellite polymorphism in commercial broiler and layers lines estimated using pooled blood samples. Poult Sci, 1996, 72: 334–348Google Scholar
  7. 7.
    Hillel J, Korol A, Kirzner V, Freidlin P, Weigend S, Barre-Dirie A, Groenen M A M, Crooijmans R P M A, Tixier-Boichard M, Vignal A, Wimmers K, Burke T, Thomson P A, Maki-Tanila A, Elo K, Zhivotovsky L A, Feldman M W. Biodiversity of chickens based on DNA pools: First results of the EC funded project AVIANDIV. In: Preisinger R, ed. Proceedings of the Poultry Genetic Symposium. Mariensee, Germany, Cuxhaven: Lohmann Tierzucht, 1999. 22–29Google Scholar
  8. 8.
    Hillel J, Groenen M A M, Tixier-Boichard M, Korol A B, David L, Kirzhner V M, Burke T, Barre-Dirie A, Crooijmans R P M A, Elo K, Feldman M W, Freidlin P J, Mäki-Tanila A, Oortwijn M, Thomson P, Vignal A, Wimmers K, Weigend S. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet Sel Evol, 2003, 35: 533–557PubMedCrossRefGoogle Scholar
  9. 9.
    Weigend S, Hillel J, Groenen M A M, Tixier-Boichard M, Korol A, Kirzner V, Freidlin P, Crooijmans R P M A, Vignal A, Wimmers K, Ponsuksili S, Thomson P A, Burke T, Maki-Tanila A, Elo K, Barre-Dirie A, Zhivotovsky L A, Feldman M W. Assessment of biodiversity in a wide range of chicken breeds by genotyping DNA pools for microsatellite loci. In Proc. of the 27th International Conference on Animal Genetics. Minneapolis, USA, 2000. 83Google Scholar
  10. 10.
    Weigend S, Romanov M N. Current strategies for the assessment and evaluation of genetic diversity in chicken resources. World’s Poult Sci J, 2001, 57: 275–288CrossRefGoogle Scholar
  11. 11.
    Romanov M N, Weigend S. Using RAPD markers for assessment of genetic diversity in chickens. Arch Geflugelkd, 2001, 65: 1–4Google Scholar
  12. 12.
    Zhang X, Leung F C, Chan D K, Chen Y, Wu C. Comparative analysis of allozyme, random amplified polymorphic DNA, and microsatellite polymorphism on Chinese native chickens. Poult Sci, 2002, 81: 1093–1098PubMedGoogle Scholar
  13. 13.
    Zhang X, Leung F C, Chan D K, Yang G, Wu C. Genetic diversity of Chinese native chicken breeds based on protein polymorphism, randomly amplified polymorphic DNA, and microsatellite polymorphism. Poult Sci, 2002b, 81: 1463–1472PubMedGoogle Scholar
  14. 14.
    Rosenberg N A, Burke T, Elo K, Feldman M W, Freidlin P J, Groenen M A M, Hillel J, Mäki-Tanila A, Tixier-Boichard M, Vignal A, Wimmers K, Weigend S. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics, 2001, 159: 699–713PubMedGoogle Scholar
  15. 15.
    Qu L J, Li X Y, Wu G, Yang N. Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis, 2005, 26: 99–101PubMedCrossRefGoogle Scholar
  16. 16.
    Marshall T. User’s Manual for Cervus. University of Edinburgh, UK. 1998Google Scholar
  17. 17.
    Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314–331PubMedGoogle Scholar
  18. 18.
    Nei M. Genetic distance between populations. Am Nat, 1972, 106: 283–293CrossRefGoogle Scholar
  19. 19.
    Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583–590Google Scholar
  20. 20.
    Du Z Q, Qu L J, Li X Y, Hu X X, Huang Y H, Li N, Yang N. Genetic Diversity in Tibetan Chicken. Hereditas, 2004, 26: 167–171PubMedGoogle Scholar
  21. 21.
    Ponsuksili S, Wimmers K, Schmoll F, Horst P, Schellander K. Comparison of multilocus DNA fingerprints and microsatellites in an estimate of genetic distance in chickens. Hered, 1999, 90: 656–659CrossRefGoogle Scholar
  22. 22.
    Vanhala T, Tuiskula-Havisto M, Elo K, Vilkki J, Maki-Tanila A. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poult Sci, 1998, 77: 783–790PubMedGoogle Scholar
  23. 23.
    Zhou H, Lamont S J. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers. Anim Genet, 1999, 30: 256–264PubMedCrossRefGoogle Scholar
  24. 24.
    Shriver M D, Jin L, Boerwinkle E, Deka R, Ferrell R E, Chakraborty R. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol Biol Evol, 1995, 12: 914–920PubMedGoogle Scholar
  25. 25.
    Chu J Y, Huang W, Kuang S Q, Wang J M, Xu J J, Chu Z T, Yang Z Q, Lin K Q, Li P, Wu M, Geng Z C, Tan C C, Du R F, Jin L. Genetic relationship of populations in China. Proc Natl Acad Sci USA, 1998, 95: 11763–11768PubMedCrossRefGoogle Scholar
  26. 26.
    Wu D C, Yang Z. Game chickens. In: Chinese Game Chickens. Huhhot: Yuanfang Publisher, 1993. 4–7Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Qu Lujiang 
    • 1
  • Li Xianyao 
    • 1
  • Xu Guifang 
    • 2
  • Chen Kuanwei 
    • 3
  • Yang Hongjie 
    • 2
  • Zhang Longchao 
    • 1
  • Wu Guiqin 
    • 1
  • Hou Zhuocheng 
    • 1
  • Xu Guiyun 
    • 1
  • Yang Ning 
    • 1
  1. 1.College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
  2. 2.National Service for Animal Husbandry and VeterinarianBeijingChina
  3. 3.Institute of Poultry ScienceChinese Academy of Agricultural ScienceYangzhou, JiangsuChina

Personalised recommendations