Skip to main content
Log in

Two SbX5-based isostructural polar 1D hybrid antimony halides with tunable broadband emission, nonlinear optics, and semiconductor properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal halide perovskites based on MX6 (M is metal and X is halogen) octahedra have developed into significant materials, extensively used in many fields, such as solid-state lighting, semiconductor, and nonlinear optics. However, the MX5 square pyramid-based hybrid metal halides beyond zero-dimensional (0D) polyhedrons and clusters are rarely reported. Herein, we reported two new isostructural hybrid antimony halides, namely (2cepyH)SbCl4 (1-Cl) and (2cepyH)SbBr4 (2-Br) (2cepy = 1-(2-chloroethyl)pyrrolidine), characterized by 1D polar polyanionic chains formed by corner-sharing SbX5 tetragonal pyramid units. Upon photoexcitation at 340 nm, 1-Cl shows broad, yellow phosphorescence emissions stemming from triplet self-trapped excitons, as proved by its long lifetime (6.85 μs) and the temperature dependences of broadband emission. To our knowledge, this should be the first observation on the broadband emissive properties in the 1D hybrid metal halide constructed by MX5 tetragonal pyramid units. Moreover, second harmonic generation measurements show that the nonlinear optical properties of 2-Br (∼3.2 × KDP) are superior to that of 1-Cl (∼1.8 × KDP). Experimental and calculated data indicate that the bandgap of 1-Cl is larger than that of 2-Br and that the polar inorganic moieties determine their band structures. Our work opens up a new way for constructing broadband emission materials with novel polar frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassan Y, Park JH, Crawford ML, Sadhanala A, Lee J, Sadighian JC, Mosconi E, Shivanna R, Radicchi E, Jeong M, Yang C, Choi H, Park SH, Song MH, De Angelis F, Wong CY, Friend RH, Lee BR, Snaith HJ. Nature, 2021, 591: 72–77

    Article  CAS  PubMed  Google Scholar 

  2. Katz EA. Sci China Chem, 2017, 60: 1326–1327

    Article  CAS  Google Scholar 

  3. Wang KH, Zhu BS, Yao JS, Yao HB. Sci China Chem, 2018, 61: 1047–1061

    Article  CAS  Google Scholar 

  4. Zhou G, Su B, Huang J, Zhang Q, Xia Z. Mater Sci Eng-R-Rep, 2020, 141: 100548

    Article  Google Scholar 

  5. Rothmann MU, Kim JS, Borchert J, Lohmann KB, O’Leary CM, Sheader AA, Clark L, Snaith HJ, Johnston MB, Nellist PD, Herz LM. Science, 2020, 370: eabb5940

    Article  CAS  PubMed  Google Scholar 

  6. Brochard-Garnier S, Paris M, Génois R, Han Q, Liu Y, Massuyeau F, Gautier R. Adv Funct Mater, 2019, 29: 1806728

    Article  Google Scholar 

  7. Rahaman MZ, Ge S, Lin CH, Cui Y, Wu T. Small Struct, 2021, 2: 2000062

    Article  Google Scholar 

  8. Gautier R, Paris M, Massuyeau F. J Am Chem Soc, 2019, 141: 12619–12623

    Article  CAS  PubMed  Google Scholar 

  9. Mao L, Wu Y, Stoumpos CC, Traore B, Katan C, Even J, Wasielewski MR, Kanatzidis MG. J Am Chem Soc, 2017, 139: 11956–11963

    Article  CAS  PubMed  Google Scholar 

  10. Hu YQ, Hui HY, Lin WQ, Wen HQ, Yang DS, Feng GD. Inorg Chem, 2019, 58: 16346–16353

    Article  CAS  PubMed  Google Scholar 

  11. Zhou C, Lin H, Lee S, Chaaban M, Ma B. Mater Res Lett, 2018, 6: 552–569

    Article  CAS  Google Scholar 

  12. King RB. Inorg Chem, 1998, 37: 3057–3059

    Article  CAS  Google Scholar 

  13. Rzepa HS, Cass ME. Inorg Chem, 2006, 45: 3958–3963

    Article  CAS  PubMed  Google Scholar 

  14. Halasyamani PS, Poeppelmeier KR. Chem Mater, 1998, 10: 2753–2769

    Article  CAS  Google Scholar 

  15. Li M, Xia Z. Chem Soc Rev, 2021, 50: 2626–2662

    Article  CAS  PubMed  Google Scholar 

  16. Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu XH. Adv Mater, 2020, 32: 1806736

    Article  CAS  Google Scholar 

  17. McCall KM, Morad V, Benin BM, Kovalenko MV. ACS Mater Lett, 2020, 2: 1218–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen N, Wang Z, Jin J, Gong L, Zhang Z, Huang X. CrystEngComm, 2020, 22: 3395–3405

    Article  CAS  Google Scholar 

  19. Wang ZP, Wang JY, Li JR, Feng ML, Zou GD, Huang XY. Chem Commun, 2015, 51: 3094–3097

    Article  CAS  Google Scholar 

  20. Li Z, Li Y, Liang P, Zhou T, Wang L, Xie RJ. Chem Mater, 2019, 31: 9363–9371

    Article  CAS  Google Scholar 

  21. Zhou C, Worku M, Neu J, Lin H, Tian Y, Lee S, Zhou Y, Han D, Chen S, Hao A, Djurovich PI, Siegrist T, Du MH, Ma B. Chem Mater, 2018, 30: 2374–2378

    Article  CAS  Google Scholar 

  22. Zhou C, Lin H, Tian Y, Yuan Z, Clark R, Chen B, van de Burgt LJ, Wang JC, Zhou Y, Hanson K, Meisner QJ, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B. Chem Sci, 2018, 9: 586–593

    Article  CAS  PubMed  Google Scholar 

  23. Song G, Li M, Zhang S, Wang N, Gong P, Xia Z, Lin Z. Adv Funct Mater, 2020, 30: 2002468

    Article  CAS  Google Scholar 

  24. Xu J, Li S, Qin C, Feng Z, Du Y. J Phys Chem C, 2020, 124: 11625–11630

    Article  CAS  Google Scholar 

  25. Wojciechowska M, Szklarz P, Białońska A, Baran J, Janicki R, Medycki W, Durlak P, Piecha-Bisiorek A, Jakubas R. CrystEngComm, 2016, 18: 6184–6194

    Article  CAS  Google Scholar 

  26. Casas JS, Castellano EE, Couce MD, Sanchez A, Sordo J, Taboada C, Vazquez-Lopez EM. Main Group Metal Chem, 1999, 22: 439

    Article  CAS  Google Scholar 

  27. Qi ZK, Zhang FQ, Yao RX, Liu JL, Zhang XM. Inorg Chem Commun, 2014, 39: 21–25

    Article  CAS  Google Scholar 

  28. Liao WQ, Tang YY, Li PF, You YM, Xiong RG. J Am Chem Soc, 2018, 140: 3975–3980

    Article  CAS  PubMed  Google Scholar 

  29. Wojtaś M, Bil A, Gagor A, Medycki W, Kholkin AL. CrystEngComm, 2016, 18: 2413–2424

    Article  Google Scholar 

  30. Neumüller B, Dehnicke K. Z anorg allg Chem, 2006, 632: 1681–1686

    Article  Google Scholar 

  31. Guo Y, Zhang M, Shen L, Jin YY, Jin ZM. Crystallogr Rep, 2010, 55: 1194–1197

    Article  CAS  Google Scholar 

  32. Ensinger U, Schwarz W, Schmidt A. Z für Naturforschung B, 1983, 38: 149–154

    Article  Google Scholar 

  33. Qi Z, Chen Y, Guo Y, Yang X, Gao H, Zhou G, Li SL, Zhang XM. Chem Commun, 2021, 57: 2495–2498

    Article  CAS  Google Scholar 

  34. Qi Z, Chen Y, Guo Y, Yang X, Zhang FQ, Zhou G, Zhang XM. J Mater Chem C, 2021, 9: 88–94

    Article  CAS  Google Scholar 

  35. Kurtz SK, Perry TT. J Appl Phys, 1968, 39: 3798–3813

    Article  CAS  Google Scholar 

  36. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  37. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  38. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  39. Methfessel M, Paxton AT. Phys Rev B, 1989, 40: 3616–3621

    Article  CAS  Google Scholar 

  40. Pack JD, Monkhorst HJ. Phys Rev B, 1977, 16: 1748–1749

    Article  Google Scholar 

  41. Lv JN, Zeng LR, Ma JQ, Yue CY. InOrg Chem Commun, 2020, 117: 107973

    Article  CAS  Google Scholar 

  42. Dohner ER, Jaffe A, Bradshaw LR, Karunadasa HI. J Am Chem Soc, 2014, 136: 13154–13157

    Article  CAS  PubMed  Google Scholar 

  43. Sun C, Yue YD, Zhang WF, Sun XY, Du Y, Pan HM, Ma YY, He YC, Li MT, Jing ZH. CrystEngComm, 2020, 22: 1480–1486

    Article  CAS  Google Scholar 

  44. Liu Y, Wang C, Guo Y, Ma L, Zhou C, Liu Y, Zhu L, Li X, Zhang M, Zhao G. J Mater Chem C, 2020, 8: 5673–5680

    Article  CAS  Google Scholar 

  45. Zickgraf A, Bräu E, Dräger M. SpectroChim Acta Part A-Mol Biomol Spectr, 1998, 54: 85–90

    Article  Google Scholar 

  46. Deng Y, Dong X, Yang M, Zeng H, Zou G, Lin Z. Dalton Trans, 2019, 48: 17451–17455

    Article  CAS  PubMed  Google Scholar 

  47. Mutailipu M, Yang Z, Pan S. Acc Mater Res, 2021, 2: 282–291

    Article  CAS  Google Scholar 

  48. Xia M, Li F, Mutailipu M, Han S, Yang Z, Pan S. Angew Chem Int Ed, 2021, 60: 14650–14656

    Article  CAS  Google Scholar 

  49. Zhang J, Han S, Ji C, Zhang W, Wang Y, Tao K, Sun Z, Luo J. Chem Eur J, 2017, 23: 17304–17310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (21871167, 22075168), the 1331 Project of Shanxi Province, the Science and Technology Innovation Project in Colleges and Universities of Shanxi Province (2019L0451), and the Shanxi Normal University Startup. The authors would like to thank Prof. Zhenhua Qiao from University of Science and Technology of China for calculating the band structures and PDOS of two isostructural compounds presented in this work through using VASP software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2021_1076_MOESM1_ESM.pdf

Two SbX5-based isostructural polar 1D hybrid antimony halides with tunable broadband emission, nonlinear optics, and semiconductor properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Chen, Y., Gao, H. et al. Two SbX5-based isostructural polar 1D hybrid antimony halides with tunable broadband emission, nonlinear optics, and semiconductor properties. Sci. China Chem. 64, 2111–2117 (2021). https://doi.org/10.1007/s11426-021-1076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1076-9

Keywords

Navigation