Skip to main content
Log in

Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency (PCE) beyond the limits of single-junction cells. However, their performance is still largely constrained by the wide-bandgap perovskite solar cells which show considerable open-circuit voltage (VOC) losses. Here, we increase the VOC and PCE of wide-bandgap perovskite solar cells by changing the hole transport layer (HTL) from commonly used poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) to in-situ cross-linked small molecule N4,N4′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl) biphenyl-4,4′-diamine (VNPB). The stronger interaction and lower trap density at the VNPB/perovskite interface improve the PCE and stability of wide-bandgap perovskite solar cells. By using the cross-linked HTL for front wide-bandgap subcells, PCEs of 24.9% and 25.4% have been achieved in perovskite/perovskite and perovskite/silicon tandem solar cells, respectively. The results demonstrate that cross-linkable small molecules are promising for high-efficiency and cost-effective perovskite tandem photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726

    Article  CAS  PubMed  Google Scholar 

  2. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C. Science, 2020, 369: 1615–1620

    Article  CAS  PubMed  Google Scholar 

  3. Hassan Y, Park JH, Crawford ML, Sadhanala A, Lee J, Sadighian JC, Mosconi E, Shivanna R, Radicchi E, Jeong M, Yang C, Choi H, Park SH, Song MH, De Angelis F, Wong CY, Friend RH, Lee BR, Snaith HJ. Nature, 2021, 591: 72–77

    Article  CAS  PubMed  Google Scholar 

  4. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  PubMed  Google Scholar 

  5. Best Research-Cell Efficiencies. NREL. 2020, https://www.nrel.gov/pv

  6. Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor FH, Xue DJ, Chen B, Chen H, Bahrami B, Chowdhury AH, Johnston A, Baek SW, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli AJ, Allen TG, Van Kerschaver E, Saidaminov MI, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent EH. Science, 2020, 367: 1135–1140

    Article  CAS  PubMed  Google Scholar 

  7. Xu J, Boyd CC, Yu ZJ, Palmstrom AF, Witter DJ, Larson BW, France RM, Werner J, Harvey SP, Wolf EJ, Weigand W, Manzoor S, van Hest MFAM, Berry JJ, Luther JM, Holman ZC, McGehee MD. Science, 2020, 367: 1097–1104

    Article  CAS  PubMed  Google Scholar 

  8. Chen B, Yu ZJ, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman ZC, Huang J. Joule, 2020, 4: 850–864

    Article  CAS  Google Scholar 

  9. Fu F, Feurer T, Weiss TP, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari AN. Nat Energy, 2017, 2: 16190

    Article  CAS  Google Scholar 

  10. Han Q, Hsieh YT, Meng L, Wu JL, Sun P, Yao EP, Chang SY, Bae SH, Kato T, Bermudez V, Yang Y. Science, 2018, 361: 904–908

    Article  CAS  PubMed  Google Scholar 

  11. Kim DH, Muzzillo CP, Tong J, Palmstrom AF, Larson BW, Choi C, Harvey SP, Glynn S, Whitaker JB, Zhang F, Li Z, Lu H, van Hest MFAM, Berry JJ, Mansfield LM, Huang Y, Yan Y, Zhu K. Joule, 2019, 3: 1734–1745

    Article  CAS  Google Scholar 

  12. Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JTW, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slot-cavage DJ, Belisle RA, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen HG, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, Snaith HJ. Science, 2016, 354: 861–865

    Article  CAS  PubMed  Google Scholar 

  13. Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov MI, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent EH, Tan H. Nat Energy, 2019, 4: 864–873

    Article  CAS  Google Scholar 

  14. Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen HT, Wen J, Wei M, Yeddu V, Saidaminov MI, Gao Y, Luo X, Wang Y, Gao H, Zhang C, Xu J, Zhu J, Sargent EH, Tan H. Nat Energy, 2020, 5: 870–880

    Article  Google Scholar 

  15. Gu S, Lin R, Han Q, Gao Y, Tan H, Zhu J. Adv Mater, 2020, 32: 1907392

    Article  CAS  Google Scholar 

  16. Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519

    Article  CAS  Google Scholar 

  17. Green MA. Nat Energy, 2016, 1: 15015

    Article  Google Scholar 

  18. Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235

    Article  PubMed  Google Scholar 

  19. Li H, Zhang W. Chem Rev, 2020, 120: 9835–9950

    Article  CAS  PubMed  Google Scholar 

  20. Jošt M, Kegelmann L, Korte L, Albrecht S. Adv Energy Mater, 2020, 10: 1904102

    Article  Google Scholar 

  21. Tan H, Che F, Wei M, Zhao Y, Saidaminov MI, Todorović P, Broberg D, Walters G, Tan F, Zhuang T, Sun B, Liang Z, Yuan H, Fron E, Kim J, Yang Z, Voznyy O, Asta M, Sargent EH. Nat Commun, 2018, 9: 3100

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen C, Song Z, Xiao C, Zhao D, Shrestha N, Li C, Yang G, Yao F, Zheng X, Ellingson RJ, Jiang CS, Al-Jassim M, Zhu K, Fang G, Yan Y. Nano Energy, 2019, 61: 141–147

    Article  CAS  Google Scholar 

  23. Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442–1446

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zhang M, Xiao K, Lin R, Luo X, Han Q, Tan H. J Semicond, 2020, 41: 051201

    Article  CAS  Google Scholar 

  25. Wu WQ, Yang Z, Rudd PN, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J. Sci Adv, 2019, 5: eaav8925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J. Adv Mater, 2017, 29: 1700607

    Article  Google Scholar 

  27. Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng XC, Huang J. Nat Energy, 2017, 2: 17102

    Article  CAS  Google Scholar 

  28. Stolterfoht M, Caprioglio P, Wolff CM, Márquez JA, Nordmann J, Zhang S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D. Energy Environ Sci, 2019, 12: 2778–2788

    Article  CAS  Google Scholar 

  29. Hu M, Bi C, Yuan Y, Bai Y, Huang J. Adv Sci, 2016, 3: 1500301

    Article  Google Scholar 

  30. Stolterfoht M, Wolff CM, Márquez JA, Zhang S, Hages CJ, Rothhardt D, Albrecht S, Burn PL, Meredith P, Unold T, Neher D. Nat Energy, 2018, 3: 847–854

    Article  CAS  Google Scholar 

  31. Yang L, Cai F, Yan Y, Li J, Liu D, Pearson AJ, Wang T. Adv Funct Mater, 2017, 27: 1702613

    Article  Google Scholar 

  32. Shang R, Zhou Z, Nishioka H, Halim H, Furukawa S, Takei I, Ninomiya N, Nakamura E. J Am Chem Soc, 2018, 140: 5018–5022

    Article  CAS  PubMed  Google Scholar 

  33. Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528–2531

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Cole MD, Gao Y, Emrick T, Xu Z, Liu Y, Russell TP. ACS Appl Energy Mater, 2019, 2: 1634–1641

    Article  CAS  Google Scholar 

  35. Rakstys K, Stephen M, Saghaei J, Jin H, Gao M, Zhang G, Hutchinson K, Chesman A, Burn PL, Gentle I, Shaw PE. ACS Appl Energy Mater, 2020, 3: 889–899

    Article  CAS  Google Scholar 

  36. Xu J, Voznyy O, Comin R, Gong X, Walters G, Liu M, Kanjanaboos P, Lan X, Sargent EH. Adv Mater, 2016, 28: 2807–2815

    Article  CAS  PubMed  Google Scholar 

  37. Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez JA, Morales Vilches AB, Kasparavicius E, Smith JA, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matič G, Rech B, Schlatmann R, Topič M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S. Science, 2020, 370: 1300–1309

    Article  CAS  PubMed  Google Scholar 

  38. Guo P, Ye Q, Yang X, Zhang J, Xu F, Shchukin D, Wei B, Wang H. J Mater Chem A, 2019, 7: 2497–2506

    Article  CAS  Google Scholar 

  39. Zhu P, Gu S, Luo X, Gao Y, Li S, Zhu J, Tan H. Adv Energy Mater, 2020, 10: 1903083

    Article  CAS  Google Scholar 

  40. Sun X, Deng X, Li Z, Xiong B, Zhong C, Zhu Z, Li Z, Jen AKY. Adv Sci, 2020, 7: 1903331

    Article  CAS  Google Scholar 

  41. Fei C, Li B, Zhang R, Fu H, Tian J, Cao G. Adv Energy Mater, 2017, 7: 1602017

    Article  Google Scholar 

  42. Tan F, Tan H, Saidaminov MI, Wei M, Liu M, Mei A, Li P, Zhang B, Tan CS, Gong X, Zhao Y, Kirmani AR, Huang Z, Fan JZ, Quintero-Bermudez R, Kim J, Zhao Y, Voznyy O, Gao Y, Zhang F, Richter LJ, Lu ZH, Zhang W, Sargent EH. Adv Mater, 2019, 31: 1807435

    Article  Google Scholar 

  43. Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng XC, Zhan X, Huang J. Adv Mater, 2017, 29: 1604545

    Article  Google Scholar 

  44. Chiang TY, Fan GL, Jeng JY, Chen KC, Chen P, Wen TC, Guo TF, Wong KT. ACS Appl Mater Interfaces, 2015, 7: 24973–24981

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Wang P, Wang S, Wang Z, Cai B, Zheng X, Chen Y, Yuan N, Ding J, Zhang WH. ChemSusChem, 2018, 11: 837–842

    Article  CAS  PubMed  Google Scholar 

  46. Wei D, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman AM, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M. Adv Mater, 2018, 30: 1707583

    Article  Google Scholar 

  47. Chen X, Chen XR, Hou TZ, Li BQ, Cheng XB, Zhang R, Zhang Q. Sci Adv, 2019, 5: eaau7728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Medina E, Pinter B. J Phys Chem A, 2020, 124: 4223–4234

    Article  CAS  PubMed  Google Scholar 

  49. Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R, Liu Z. Front Energy, 2017, 11: 78–84

    Article  Google Scholar 

  50. Zhang L, Liu W, Guo W, Bao J, Zhang X, Liu J, Wang D, Meng F, Liu Z. IEEE J Photovoltaics, 2016, 6: 604–610

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program of China (2018YFB1500102), the National Natural Science Foundation of China (61974063, 22005139), Natural Science Foundation of Jiangsu Province (BK20202008, BK20190315), Fundamental Research Funds for the Central Universities (0205/14380252) and Program for Innovative Talents and Entrepreneur in Jiangsu. The work in SIMIT is supported by the National Natural Science Foundation of China (62074153), Strategic Priority Research Program of Chinese Academy of Sciences (XDA17020403), Science and Technology Commission of Shanghai (19DZ1207602 and 20DZ1207103). We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this work on its blade cluster system.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengxin Liu or Hairen Tan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gu, S., Liu, G. et al. Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells. Sci. China Chem. 64, 2025–2034 (2021). https://doi.org/10.1007/s11426-021-1059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1059-1

Keywords

Navigation