Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency

  • 13 Accesses


Optimizing the components and morphology within the photoactive layer of organic solar cells (OSCs) can significantly enhance their power conversion efficiency (PCE). A new A-D-A type non-fullerene acceptor IDMIC-4F is designed and synthesized in this work, and is employed as the third component to prepare high performance ternary solar cells. IDMIC-4F can form fibrils after solution casting, and the presence of this fibrillar structure in the PBDB-T-2F:BTP-4F host confines the growth of donors and acceptors into fine domains, as well as acting as transport channels to enhance electron mobility. Single junction ternary devices incorporating 10 wt% IDMIC-4F exhibit enhanced light absorption and balanced carrier mobility, and achieve a maximum PCE of 16.6% compared to 15.7% for the binary device, which is a remarkable efficiency for OSCs reported in literature. This non-fullerene acceptor fibril network strategy is a promising method to improve the photovoltaic performance of ternary OSCs.

This is a preview of subscription content, log in to check access.


  1. 1

    Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

  2. 2

    Cheng P, Wang R, Zhu J, Huang W, Chang SY, Meng L, Sun P, Cheng HW, Qin M, Zhu C, Zhan X, Yang Y. Adv Mater, 2018, 30: 1705243

  3. 3

    Heeger AJ. Adv Mater, 2014, 26: 10–28

  4. 4

    Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453

  5. 5

    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

  6. 6

    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

  7. 7

    Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T. Joule, 2019, 3: 819–833

  8. 8

    Yan Y, Li W, Cai J, Chen M, Mao Y, Chen X, Gurney RS, Liu D, Huang F, Wang T. Mater Chem Front, 2018, 2: 1859–1865

  9. 9

    Bai Y, Zhao C, Chen X, Zhang S, Zhang S, Hayat T, Alsaedi A, Tan Z, Hou J, Li Y. J Mater Chem A, 2019, 7: 15887–15894

  10. 10

    Wang Y, Lan W, Li N, Lan Z, Li Z, Jia J, Zhu F. Adv Energy Mater, 2019, 9: 1900157

  11. 11

    Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2017, 11: 85–90

  12. 12

    Yan Y, Li W, Cai JL, Chen MX, Mao YC, Chen XL, Gurney RS, Liu D, Huang F, Wang T. Mater Chem Front, 2018, 2: 1859–1865

  13. 13

    Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

  14. 14

    Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

  15. 15

    Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

  16. 16

    Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210

  17. 17

    Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El- Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD. Adv Mater, 2019, 31: 1902965

  18. 18

    Li K, Wu Y, Tang Y, Pan M, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728

  19. 19

    Li X, Pan F, Sun C, Zhang M, Wang Z, Du J, Wang J, Xiao M, Xue L, Zhang ZG, Zhang C, Liu F, Li Y. Nat Commun, 2019, 10: 519

  20. 20

    Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094

  21. 21

    Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, https://doi.org/10.1007/s11426-019-9599-1

  22. 22

    Xie Y, Huo L, Fan B, Fu H, Cai Y, Zhang L, Li Z, Wang Y, Ma W, Chen Y, Sun Y. Adv Funct Mater, 2018, 28: 1800627

  23. 23

    Ye L, Xie Y, Weng K, Ryu HS, Li C, Cai Y, Fu H, Wei D, Woo HY, Tan S, Sun Y. Nano Energy, 2019, 58: 220–226

  24. 24

    An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504–506

  25. 25

    Chang Y, Lau TK, Pan MA, Lu X, Yan H, Zhan C. Mater Horiz, 2019, 6: 2094–2102

  26. 26

    Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959

  27. 27

    Li H, Lu K, Wei Z. Adv Energy Mater, 2017, 7: 1602540

  28. 28

    Bi P, Hao X. Sol RRL, 2019, 3: 1800263

  29. 29

    Dayneko SV, Hendsbee AD, Cann JR, Cabanetos C, Welch GC. New J Chem, 2019, 43: 10442–10448

  30. 30

    Gasparini N, Lucera L, Salvador M, Prosa M, Spyropoulos GD, Kubis P, Egelhaaf HJ, Brabec CJ, Ameri T. Energy Environ Sci, 2017, 10: 885–892

  31. 31

    Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, Liu X, Zhang J, Tang W. Adv Energy Mater, 2018, 8: 1702854

  32. 32

    Su D, Pan MA, Liu Z, Lau TK, Li X, Shen F, Huo S, Lu X, Xu A, Yan H, Zhan C. Chem Mater, 2019, 31: 8908–8917

  33. 33

    Chen Y, Ye P, Jia X, Gu W, Xu X, Wu X, Wu J, Liu F, Zhu ZG, Huang H. J Mater Chem A, 2017, 5: 19697–19702

  34. 34

    Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154

  35. 35

    Gao J, Wang J, An Q, Ma X, Hu Z, Xu C, Zhang X, Zhang F. Sci China Chem, 2020, 63: 83–91

  36. 36

    Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118

  37. 37

    Liu S, You P, Li J, Li J, Lee CS, Ong BS, Surya C, Yan F. Energy Environ Sci, 2015, 8: 1463–1470

  38. 38

    Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11: 841–849

  39. 39

    Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529–2536

  40. 40

    Zhang M, Ming R, Gao W, An Q, Ma X, Hu Z, Yang C, Zhang F. Nano Energy, 2019, 59: 58–65

  41. 41

    Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564

  42. 42

    Kan B, Yi YQQ, Wan X, Feng H, Ke X, Wang Y, Li C, Chen Y. Adv Energy Mater, 2018, 8: 1800424

  43. 43

    Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258–265

  44. 44

    Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150

  45. 45

    Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

  46. 46

    Cheng P, Yan C, Wu Y, Wang J, Qin M, An Q, Cao J, Huo L, Zhang F, Ding L, Sun Y, Ma W, Zhan X. Adv Mater, 2016, 28: 8021–8028

  47. 47

    Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv Mater, 2018, 30: 1803045

  48. 48

    Yu R, Yao H, Hou J. Adv Energy Mater, 2018, 8: 1702814

  49. 49

    Huang H, Yang L, Sharma B. J Mater Chem A, 2017, 5: 11501–11517

  50. 50

    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

  51. 51

    Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328–1337

  52. 52

    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868

  53. 53

    Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668

  54. 54

    Street RA, Davies D, Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2013, 135: 986–989

  55. 55

    Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2011, 133: 14534–14537

  56. 56

    Khlyabich PP, Rudenko AE, Thompson BC, Loo YL. Adv Funct Mater, 2015, 25: 5557–5563

  57. 57

    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

  58. 58

    Ye L, Xiong Y, Zhang Q, Li S, Wang C, Jiang Z, Hou J, You W, Ade H. Adv Mater, 2018, 30: 1705485

  59. 59

    Ma W, Yang C, Gong X, Lee K, Heeger AJ. Adv Funct Mater, 2005, 15: 1617–1622

  60. 60

    Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030

  61. 61

    Liu T, Huo L, Sun X, Fan B, Cai Y, Kim T, Kim JY, Choi H, Sun Y. Adv Energy Mater, 2016, 6: 1502109

  62. 62

    Lu L, Luo Z, Xu T, Yu L. Nano Lett, 2013, 13: 59–64

Download references


This work was supported by the Natural Science Foundation of Hubei Province of China (2018CFA055), the National Natural Science Foundation of China (21774097) and the 111 project (B18038). All authors thank the beamline BL16B1 at Shanghai Synchrotron Radiation Facility (China) for providing the beam time and help during GISAXS experiment. We also thank the Diamond Light Source (UK) beamline I07 where GIWAXS measurements were performed (via beamtime allocation SI22651-1). We also thank the U.K. EPSRC for funding studentships for R. C.K. (DTG allocation), M.E.O’K. (EP/L016281/1: CDT in Polymers, Soft Matter and Colloids) and J.A.S. (EP/L01551X/1: CDT in New and Sustainable PV).

Author information

Correspondence to Tao Wang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Chen, X., Cai, J. et al. Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency. Sci. China Chem. (2020). https://doi.org/10.1007/s11426-019-9681-8

Download citation


  • ternary solar cells
  • non-fullerene acceptor fibrils
  • power conversion efficiency