Skip to main content
Log in

A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrogenation/deuteration of carbon chloride (C−Cl) bonds is of high significance but remains a remarkable challenge in synthetic chemistry, especially using safe and inexpensive hydrogen donors. In this article, a visible-light-photocatalytic watersplitting hydrogenation technology (WSHT) is proposed to in-situ generate active H-species (i.e., Had) for controllable hydrogenation of aryl chlorides instead of using flammable H2. When applying heavy water-splitting systems, we could selectively install deuterium at the C−Cl position of aryl chlorides under mild conditions for the sustainable synthesis of high-valued added deuterated chemicals. Sub-micrometer Pd nanosheets (Pd NSs) decorated crystallined polymeric carbon nitrides (CPCN) is developed as the bifunctional photocatalyst, whereas Pd NSs not only serve as a cocatalyst of CPCN to generate and stabilize H (D)-species but also play a significant role in the sequential activation and hydrogenation/deuteration of C−Cl bonds. This article highlights a photocatalytic-WSHT for controllable hydrogenation/deuteration of low-cost aryl chlorides, providing a promising way for the photosynthesis of high-valued added chemicals instead of the hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Chem Rev, 2017, 117: 5619–5674

    Article  CAS  Google Scholar 

  2. Ghosh I, Ghosh T, Bardagi JI, König B. Science, 2014, 346: 725–728

    Article  CAS  Google Scholar 

  3. Wang D, Astruc D. Chem Rev, 2015, 115: 6621–6686

    Article  CAS  Google Scholar 

  4. Qiu G, Li Y, Wu J. Org Chem Front, 2016, 3: 1011–1027

    Article  CAS  Google Scholar 

  5. Reich HJ. J Org Chem, 2012, 77: 5471–5491

    Article  CAS  Google Scholar 

  6. Ong DY, Tejo C, Xu K, Hirao H, Chiba S. Angew Chem Int Ed, 2017, 56: 1840–1844

    Article  CAS  Google Scholar 

  7. Mutsumi T, Iwata H, Maruhashi K, Monguchi Y, Sajiki H. Tetrahedron, 2011, 67: 1158–1165

    Article  CAS  Google Scholar 

  8. Douvris C, Nagaraja CM, Chen CH, Foxman BM, Ozerov OV. J Am Chem Soc, 2010, 132: 4946–4953

    Article  CAS  Google Scholar 

  9. Guo B, Li HX, Zha CH, Young DJ, Li HY, Lang JP. ChemSusChem, 2019, 12: 1421–1427

    Article  CAS  Google Scholar 

  10. Li J, Li X, Wang L, Hu Q, Sun H. Dalton Trans, 2014, 43: 6660–6666

    Article  CAS  Google Scholar 

  11. Tak H, Lee H, Kang J, Cho J. Inorg Chem Front, 2016, 3: 157–163

    Article  CAS  Google Scholar 

  12. Zhang HC, Liu RT, Zhou XG. Sci China Chem, 2014, 57: 282–288

    Article  CAS  Google Scholar 

  13. Mao ZY, Huang SY, Gao LH, Wang AE, Huang PQ. Sci China Chem, 2014, 57: 252–264

    Article  CAS  Google Scholar 

  14. Simon MO, Li CJ. Chem Soc Rev, 2012, 41: 1415–1427

    Article  CAS  Google Scholar 

  15. Just-Baringo X, Procter DJ. Acc Chem Res, 2015, 48: 1263–1275

    Article  CAS  Google Scholar 

  16. Sun B, Zhou W, Li H, Ren L, Qiao P, Li W, Fu H. Adv Mater, 2018, 30: 1804282

    Article  Google Scholar 

  17. Li H, Cao C, Liu J, Shi Y, Si R, Gu L, Song W. Sci China Mater, 2019, 62: 1306–1314

    Article  CAS  Google Scholar 

  18. Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J Am Chem Soc, 2014, 136: 9280–9283

    Article  CAS  Google Scholar 

  19. Cuerva JM, Campaña AG, Justicia J, Rosales A, Oller-López JL, Robles R, Cárdenas DJ, Buñuel E, Oltra JE. Angew Chem, 2006, 118: 5648–5652

    Article  Google Scholar 

  20. Yan K, Wu G. ACS Sustain Chem Eng, 2015, 3: 779–791

    Article  CAS  Google Scholar 

  21. Xiao S, Dai W, Liu X, Pan D, Zou H, Li G, Zhang G, Su C, Zhang D, Chen W, Li H. Adv Energy Mater, 2019, 9: 1900775

    Article  Google Scholar 

  22. Zhang G, Ou W, Wang J, Xu Y, Xu D, Sun T, Xiao S, Wang M, Li H, Chen W, Su C. Appl Catal B-Environ, 2019, 245: 114–121

    Article  CAS  Google Scholar 

  23. Liu C, Chen Z, Su C, Zhao X, Gao Q, Ning GH, Zhu H, Tang W, Leng K, Fu W, Tian B, Peng X, Li J, Xu QH, Zhou W, Loh KP. Nat Commun, 2018, 9: 80–88

    Article  Google Scholar 

  24. Qiu C, Xu Y, Fan X, Xu D, Tandiana R, Ling X, Jiang Y, Liu C, Yu L, Chen W, Su C. Adv Sci, 2019, 6: 1801403

  25. Soulard V, Villa G, Vollmar DP, Renaud P. J Am Chem Soc, 2018, 140: 155–158

    Article  CAS  Google Scholar 

  26. Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DWC. Science, 2017, 358: 1182–1187

    Article  CAS  Google Scholar 

  27. Wang X, Zhu MH, Schuman DP, Zhong D, Wang WY, Wu LY, Liu W, Stoltz BM, Liu WB. J Am Chem Soc, 2018, 140: 10970–10974

    Article  CAS  Google Scholar 

  28. Yu RP, Hesk D, Rivera N, Pelczer I, Chirik PJ. Nature, 2016, 529: 195–199

    Article  Google Scholar 

  29. Katsnelson A. Nat Med, 2013, 19: 656

    Article  CAS  Google Scholar 

  30. Mullard A. Nat Rev Drug Discov, 2017, 16: 305

    PubMed  Google Scholar 

  31. Xu Y, He X, Zhong H, Singh DJ, Zhang L, Wang R. Appl Catal BEnviron, 2019, 246: 349–355

    Article  CAS  Google Scholar 

  32. Li H, Chen G, Yang H, Wang X, Liang J, Liu P, Chen M, Zheng N. Angew Chem Int Ed, 2013, 52: 8368–8372

    Article  CAS  Google Scholar 

  33. Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat Nanotech, 2011, 6: 28–32

    Article  CAS  Google Scholar 

  34. Tauster SJ. Acc Chem Res, 1987, 20: 389–394

    Article  CAS  Google Scholar 

  35. Li XH, Antonietti M. Chem Soc Rev, 2013, 42: 6593–6604

    Article  CAS  Google Scholar 

  36. Kisch H. Acc Chem Res, 2017, 50: 1002–1010

    Article  CAS  Google Scholar 

  37. Zhou W, Fu H. Inorg Chem Front, 2018, 5: 1240–1254

    Article  CAS  Google Scholar 

  38. Zhang GQ, Liu G, Xu Y, Yang J, Li Y, Sun X, Chen W, Su CL. Sci China Mater, 2018, 61: 1033–1039

    Article  CAS  Google Scholar 

  39. Ren JT, Yuan K, Wu K, Zhou L, Zhang YW. Inorg Chem Front, 2019, 6: 366–375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21972094, 51701127, 21401190), China Postdoctoral Science Foundation (2017M612709), Guangdong Special Support Program, Pengcheng Scholar Program, Shenzhen Peacock Plan (KQJSCX20170727100802505, KQTD2016053112042971), Educational Commission of Guangdong Province (2016KTSCX126), Foundation for Distinguished Young Talents in Higher Education of Guangdong (2018KQNCX221), Shenzhen Innovation Program (JCYJ 20170818142642395). We are thankful for the support of TEM characterizations from the Electron Microscopy Center of Shenzhen University and computational source supplied by the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenliang Su.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, X., Xu, Y., Wu, S. et al. A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides. Sci. China Chem. 63, 386–392 (2020). https://doi.org/10.1007/s11426-019-9672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9672-8

Keywords

Navigation