Advertisement

A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water

  • Xitong Sun
  • Peng Wang
  • Zhengjiang Shao
  • Xiaoming CaoEmail author
  • P. HuEmail author
Articles

Abstract

The hydrogenation of carbon dioxide (CO2) is one of important processes to effectively convert and utilize CO2, which is also regarded as the key step at the industrial methanol synthesis. Water is likely to play an important role in this process, but it still remains elusive. To systematically understand its influence, here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211) surface between in the absence and presence of water based on microkinetic simulations upon density functional theory (DFT) calculations. The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed. It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH, promoting the reverse water gas shift reaction to produce carbon monoxide (CO). It hardly influences the CO2 hydrogenation to methanol kinetically. In addition, the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.

CO2 activation microkinetic modeling DFT CH3OH selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0208600), the National Natural Science Foundation of China (21673072, 21333003, 91845111), and Program of Shanghai Subject Chief Scientist (17XD1401400).

Supplementary material

11426_2019_9639_MOESM1_ESM.pdf (1.5 mb)
A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water

References

  1. 1.
    Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC. Appl Catal, 1988, 36: 1–65CrossRefGoogle Scholar
  2. 2.
    Yin X, Moss JR. Coord Chem Rev, 1999, 181: 27–59CrossRefGoogle Scholar
  3. 3.
    Shi C, Chan K, Yoo JS, Nørskov JK. Org Process Res Dev, 2016, 20: 1424–1430CrossRefGoogle Scholar
  4. 4.
    Behrens M. J Catal, 2009, 267: 24–29CrossRefGoogle Scholar
  5. 5.
    Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Science, 2017, 357: eaan8210PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M. Chem Ingenieur Technik, 2018, 90: 721–724CrossRefGoogle Scholar
  7. 7.
    Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT. J Catal, 2013, 298: 10–17CrossRefGoogle Scholar
  8. 8.
    Dietz L, Piccinin S, Maestri M. J Phys Chem C, 2015, 119: 4959–4966CrossRefGoogle Scholar
  9. 9.
    Chen Y, Cheng J, Hu P, Wang H. Surf Sci, 2008, 602: 2828–2834CrossRefGoogle Scholar
  10. 10.
    Garza AJ, Bell AT, Head-Gordon M. ACS Catal, 2018, 8: 1490–1499CrossRefGoogle Scholar
  11. 11.
    Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA. Appl Catal, 1987, 30: 333–338CrossRefGoogle Scholar
  12. 12.
    Hansen JB, Højlund Nielsen PE. Methanol synthesis. In: Knozinger GEH, Schuth F, Weitkamp J, Eds. Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 2920–2949Google Scholar
  13. 13.
    Liu XM, Lu GQ, Yan ZF, Beltramini J. Ind Eng Chem Res, 2003, 42: 6518–6530CrossRefGoogle Scholar
  14. 14.
    Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlögl R. Science, 2012, 336: 893–897PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Grabow LC, Mavrikakis M. ACS Catal, 2011, 1: 365–384CrossRefGoogle Scholar
  16. 16.
    Zhao YF, Yang Y, Mims C, Peden CHF, Li J, Mei D. J Catal, 2011, 281: 199–211CrossRefGoogle Scholar
  17. 17.
    Sun X, Cao X, Hu P. Sci China Chem, 2015, 58: 553–564CrossRefGoogle Scholar
  18. 18.
    Burch R, Golunski SE, Spencer MS. Catal Lett, 1990, 5: 55–60CrossRefGoogle Scholar
  19. 19.
    Kattel S, Yan B, Yang Y, Chen JG, Liu P. J Am Chem Soc, 2016, 138: 12440–12450PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Klier K, Chatikavanij V, Herman RG, Simmons GW. J Catal, 1982, 74: 343–360CrossRefGoogle Scholar
  21. 21.
    Parameswaran VR, Lee S, Wender I. Fuel Sci Tech Int, 1989, 7: 899–918CrossRefGoogle Scholar
  22. 22.
    Liu G, Willcox D, Garland M, Kung HH. J Catal, 1984, 90: 139–146CrossRefGoogle Scholar
  23. 23.
    He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 737–741CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775CrossRefGoogle Scholar
  27. 27.
    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  28. 28.
    Haynes WM. CRC Handbook of Chemistry and Physics. Lodon & New York: CRC Press, 2014Google Scholar
  29. 29.
    Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653CrossRefGoogle Scholar
  30. 30.
    Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. J Am Chem Soc, 2003, 125: 3704–3705PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Liu ZP, Hu P. J Am Chem Soc, 2003, 125: 1958–1967PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Schenter GK, Mills G, Jónsson H. J Chem Phys, 1994, 101: 8964–8971CrossRefGoogle Scholar
  33. 33.
    Mills G, Jónsson H, Schenter GK. Surf Sci, 1995, 324: 305–337CrossRefGoogle Scholar
  34. 34.
    Henkelman G, Jónsson H. J Chem Phys, 2000, 113: 9978–9985CrossRefGoogle Scholar
  35. 35.
    Cao XM, Burch R, Hardacre C, Hu P. Catal Today, 2011, 165: 71–79CrossRefGoogle Scholar
  36. 36.
    Wang Z, Cao XM, Zhu J, Hu P. J Catal, 2014, 311: 469–480CrossRefGoogle Scholar
  37. 37.
    Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Abild-Pedersen F, Nørskov JK, Schlögl R. ChemCatChem, 2015, 7: 1105–1111CrossRefGoogle Scholar
  38. 38.
    Zhang L, Shao ZJ, Cao XM, Hu P. J Phys Chem C, 2018, 122: 20337–20350CrossRefGoogle Scholar
  39. 39.
    Wang Z, Liu X, Rooney DW, Hu P. Surf Sci, 2015, 640: 181–189CrossRefGoogle Scholar
  40. 40.
    Rasmussen PB, Kazuta M, Chorkendorff I. Surf Sci, 1994, 318: 267–280CrossRefGoogle Scholar
  41. 41.
    Hong QJ, Liu ZP. Surf Sci, 2010, 604: 1869–1876CrossRefGoogle Scholar
  42. 42.
    Yang Y, Mims CA, Disselkamp RS, Peden CHF, Campbell CT. Top Catal, 2009, 52: 1440–1447CrossRefGoogle Scholar
  43. 43.
    Chen CS, Wu JH, Lai TW. J Phys Chem C, 2010, 114: 15021–15028CrossRefGoogle Scholar
  44. 44.
    Studt F, Abild-Pedersen F, Varley JB, Nørskov JK. Catal Lett, 2013, 143: 71–73CrossRefGoogle Scholar
  45. 45.
    Nie X, Esopi MR, Janik MJ, Asthagiri A. Angew Chem Int Ed, 2013, 52: 2459–2462CrossRefGoogle Scholar
  46. 46.
    Li Z, Wang J, Qu Y, Liu H, Tang C, Miao S, Feng Z, An H, Li C. ACS Catal, 2017, 7: 8544–8548CrossRefGoogle Scholar
  47. 47.
    Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gokhale AA, Dumesic JA, Mavrikakis M. J Am Chem Soc, 2008, 130: 1402–1414PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Álvarez A, Borges M, Corral-Pérez JJ, Olcina JG, Hu L, Cornu D, Huang R, Stoian D, Urakawa A. Chem Phys Chem, 2017, 18: 3135–3141PubMedCrossRefGoogle Scholar
  50. 50.
    Yin LL, Gong XQ. Sci China Chem, 2015, 58: 601–606CrossRefGoogle Scholar
  51. 51.
    Yang M, Yuan H, Wang H, Hu P. Sci China Chem, 2018, 61: 457–467CrossRefGoogle Scholar
  52. 52.
    Yuan H, Sun N, Chen J, Jin J, Wang H, Hu P. ACS Catal, 2018, 8: 9269–9279CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratories for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Chemistry and Chemical EngineeringQueen’s University of BelfastBelfastUK

Personalised recommendations