A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel

  • Zhi Wang
  • Qing-Ping Qu
  • Hai-Feng Su
  • Peng HuangEmail author
  • Rakesh Kumar Gupta
  • Qing-Yun Liu
  • Chen-Ho Tung
  • Di SunEmail author
  • Lan-Sun Zheng


The combination of CrO42− anion and N,N′-dimethylformamide (DMF)-containing solvent helps to stabilize an atom-precise ultrasmall Ag6 kernel into a 52-nuclei silver shell, giving a core-shell Ag6@Ag52 wheel-like structure (SD/Ag58b). The solution behavior and photocurrent response property were investigated in details.


silver cluster subvalent Ag64+ kernel electrospray ionisation mass spectrometry (ESI-MS) photocurrent response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21822107, 21571115, 21827801, 21671172), the Natural Science Foundation of Shandong Province (JQ201803, ZR2017MB061), the Taishan Scholar Project of Shandong Province of China, the Qilu Youth Scholar Funding of Shandong University and the Fundamental Research Funds of Shandong University (

Supplementary material

11426_2019_9638_MOESM1_ESM.pdf (1.7 mb)
A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel
11426_2019_9638_MOESM2_ESM.pdf (270 kb)
Supplementary material, approximately 272 KB.
11426_2019_9638_MOESM3_ESM.cif (3.1 mb)
Supplementary material, approximately 3.06 MB.


  1. 1.
    Fuhr O, Dehnen S, Fenske D. Chem Soc Rev, 2013, 42: 1871–1906PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Li YY, Gao F, Beves JE, Li YZ, Zuo JL. Chem Commun, 2013, 49: 3658–3660CrossRefGoogle Scholar
  3. 3.
    Corrigan JF, Fuhr O, Fenske D. Adv Mater, 2009, 21: 1867–1871CrossRefGoogle Scholar
  4. 4.
    Wang XJ, Langetepe T, Persau C, Kang BS, Sheldrick GM, Fenske D. Angew Chem Int Ed, 2002, 41: 3818–3822CrossRefGoogle Scholar
  5. 5.
    Li YH, Huang RW, Luo P, Cao M, Xu H, Zang SQ, Mak TCW. Sci China Chem, 2019, 62: 331–335CrossRefGoogle Scholar
  6. 6.
    Fenske D, Zhu N, Langetepe T. Angew Chem Int Ed, 1998, 37: 2639–2644CrossRefGoogle Scholar
  7. 7.
    Jin S, Wang S, Song Y, Zhou M, Zhong J, Zhang J, Xia A, Pei Y, Chen M, Li P, Zhu M. J Am Chem Soc, 2014, 136: 15559–15565PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Joshi CP, Bootharaju MS, Alhilaly MJ, Bakr OM. J Am Chem Soc, 2015, 137: 11578–11581PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yang H, Lei J, Wu B, Wang Y, Zhou M, Xia A, Zheng L, Zheng N. Chem Commun, 2013, 49: 300–302CrossRefGoogle Scholar
  10. 10.
    Dhayal RS, Liao JH, Liu YC, Chiang MH, Kahlal S, Saillard JY, Liu CW. Angew Chem Int Ed, 2015, 54: 3702–3706CrossRefGoogle Scholar
  11. 11.
    Liu C, Li T, Abroshan H, Li Z, Zhang C, Kim HJ, Li G, Jin R. Nat Commun, 2018, 9: 744Google Scholar
  12. 12.
    Desireddy A, Conn BE, Guo J, Yoon B, Barnett RN, Monahan BM, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP. Nature, 2013, 501: 399–402PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Du W, Jin S, Xiong L, Chen M, Zhang J, Zou X, Pei Y, Wang S, Zhu M. J Am Chem Soc, 2017, 139: 1618–1624PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Alhilaly MJ, Bootharaju MS, Joshi CP, Besong TM, Emwas AH, Juarez-Mosqueda R, Kaappa S, Malola S, Adil K, Shkurenko A, Häkkinen H, Eddaoudi M, Bakr OM. J Am Chem Soc, 2016, 138: 14727–14732PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Qu M, Li H, Xie LH, Yan ST, Li JR, Wang JH, Wei CY, Wu YW, Zhang XM. J Am Chem Soc, 2017, 139: 12346–12349PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ren L, Yuan P, Su H, Malola S, Lin S, Tang Z, Teo BK, Häkkinen H, Zheng L, Zheng N. J Am Chem Soc, 2017, 139: 13288–13291PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Yang H, Wang Y, Chen X, Zhao X, Gu L, Huang H, Yan J, Xu C, Li G, Wu J, Edwards AJ, Dittrich B, Tang Z, Wang D, Lehtovaara L, Häkkinen H, Zheng N. Nat Commun, 2016, 7: 12809PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zhang SS, Su HF, Wang Z, Wang XP, Chen WX, Zhao QQ, Tung CH, Sun D, Zheng LS. Chem Eur J, 2018, 24: 1998–2003PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wang Z, Su HF, Wang XP, Zhao QQ, Tung CH, Sun D, Zheng LS. Chem Eur J, 2018, 24: 1640–1650PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Li XY, Su HF, Yu K, Tan YZ, Wang XP, Zhao YQ, Sun D, Zheng LS. Nanoscale, 2015, 7: 8284–8288PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wang QM, Lin YM, Liu KG. Acc Chem Res, 2015, 48: 1570–1579PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Xie YP, Jin JL, Lu X, Mak TCW. Angew Chem Int Ed, 2015, 54: 15176–15180CrossRefGoogle Scholar
  23. 23.
    Jin JL, Xie YP, Cui H, Duan GX, Lu X, Mak TCW. Inorg Chem, 2017, 56: 10412–10417PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Qiao J, Shi K, Wang QM. Angew Chem Int Ed, 2010, 49: 1765–1767CrossRefGoogle Scholar
  25. 25.
    Bian SD, Jia JH, Wang QM. J Am Chem Soc, 2009, 131: 3422–3423PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vilar R, Mingos DMP, White AJP, Williams DJ. Angew Chem Int Ed, 1998, 37: 1258–1261CrossRefGoogle Scholar
  27. 27.
    Bian SD, Wu HB, Wang QM. Angew Chem Int Ed, 2009, 48: 5363–5365CrossRefGoogle Scholar
  28. 28.
    Sun D, Wang H, Lu HF, Feng SY, Zhang ZW, Sun GX, Sun DF. Dalton Trans, 2013, 42: 6281–6284PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hau SCK, Cheng PS, Mak TCW. Organometallics, 2014, 33: 3231–3234CrossRefGoogle Scholar
  30. 30.
    Li XY, Su HF, Kurmoo M, Tung CH, Sun D, Zheng LS. Nanoscale, 2017, 9: 5305–5314PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhang SS, Alkan F, Su HF, Aikens CM, Tung CH, Sun D. J Am Chem Soc, 2019, 141: 4460–4467PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Liao JH, Chang HW, You HC, Fang CS, Liu CW. Inorg Chem, 2011, 50: 2070–2072PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhang SS, Su HF, Wang Z, Wang L, Zhao QQ, Tung CH, Sun D, Zheng LS. Chem Eur J, 2017, 23: 3432–3437PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Li YL, Xu QQ, Li S, Huang RW, Liu XF, Wei YL, Zang SQ. New J Chem, 2019, 43: 115–120CrossRefGoogle Scholar
  35. 35.
    Pastoriza-Santos I, Liz-Marzán LM. Nano Lett, 2002, 2: 903–905CrossRefGoogle Scholar
  36. 36.
    Yang H, Wang Y, Zheng N. Nanoscale, 2013, 5: 2674–2677PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Su YM, Wang Z, Zhuang GL, Zhao QQ, Wang XP, Tung CH, Sun D. Chem Sci, 2019, 10: 564–568PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu J, Wang Z, Chai Y, Kurmoo M, Zhao Q, Wang X, Tung C, Sun D. Angew Chem, 2019, 131: 6342–6345CrossRefGoogle Scholar
  39. 39.
    Wang Z, Su HF, Kurmoo M, Tung CH, Sun D, Zheng LS. Nat Commun, 2018, 9: 2094Google Scholar
  40. 40.
    Gao GG, Cheng PS, Mak TCW. J Am Chem Soc, 2009, 131: 18257–18259PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Liu CW, Chang HW, Fang CS, Sarkar B, Wang JC. Chem Commun, 2010, 46: 4571–4573CrossRefGoogle Scholar
  42. 42.
    Pyykkö P. Chem Rev, 1997, 97: 597–636PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Henglein A. Berichte der Bunsengesellschaft für Physikalische Chem, 1977, 81: 556–561CrossRefGoogle Scholar
  44. 44.
    Gachard E, Belloni J, Subramanian MA. J Mater Chem, 1996, 6: 867–870CrossRefGoogle Scholar
  45. 45.
    Mostafavi M, Keghouche N, Delcourt MO, Belloni J. Chem Phys Lett, 1990, 167: 193–197CrossRefGoogle Scholar
  46. 46.
    Mostafavi M, Keghouche N, Delcourt MO. Chem Phys Lett, 1990, 169: 81–84CrossRefGoogle Scholar
  47. 47.
    Mostafavi M, Delcourt MO, Keghouche N, Picq G. Int J Radiat Appl Instrum Part C, 1992, 40: 445–450Google Scholar
  48. 48.
    Remita S, Orts JM, Feliu JM, Mostafavi M, Delcourt MO. Chem Phys Lett, 1994, 218: 115–121CrossRefGoogle Scholar
  49. 49.
    Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. Spectrochim Acta A, 2006, 63: 189–191CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhi Wang
    • 1
  • Qing-Ping Qu
    • 1
  • Hai-Feng Su
    • 3
  • Peng Huang
    • 2
    Email author
  • Rakesh Kumar Gupta
    • 1
  • Qing-Yun Liu
    • 4
  • Chen-Ho Tung
    • 1
  • Di Sun
    • 1
    Email author
  • Lan-Sun Zheng
    • 3
  1. 1.Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
  2. 2.Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical EngineeringJiangsu Normal UniversityXuzhouChina
  3. 3.State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  4. 4.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations