Over 16.7% efficiency of ternary organic photovoltaics by employing extra PC71BM as morphology regulator

  • Jinhua Gao
  • Jian Wang
  • Qiaoshi An
  • Xiaoling Ma
  • Zhenghao Hu
  • Chunyu Xu
  • Xiaoli Zhang
  • Fujun ZhangEmail author


Ternary organic photovoltaics (OPVs) are fabricated with PBDB-T-2Cl:Y6 (1:1.2, wt/wt) as the host system and extra PC71BM as the third component. The PBDB-T-2Cl:Y6 based binary OPVs exhibit a power conversion efficiency (PCE) of 15.49% with a short circuit current (JSC) of 24.98 mA cm−2, an open circuit voltage (VOC) of 0.868 V and a fill factor (FF) of 71.42%. A 16.71% PCE is obtained in the optimized ternary OPVs with PBDB-T-2Cl:Y6:PC71BM (1:1.2:0.2, wt/wt) active layer, resulting from the synchronously improved JSC of 25.44 mA cm−2, FF of 75.66% and the constant VOC of 0.868 V. The incorporated PC71BM may prefer to mix with Y6 to finely adjust phase separation, domain size and molecular arrangement in ternary active layers, which can be confirmed from the characterization on morphology, 2D grazing incidence small and wide-angle X-ray scattering, as well as Raman mapping. In addition, PC71BM may prefer to mix with Y6 to form efficient electron transport channels, which should be conducive to charge transport and collection in the optimized ternary OPVs. This work provides more insight into the underlying reasons of the third component on performance improvement of ternary OPVs, indicating ternary strategy should be an efficient method to optimize active layers for synchronously improving photon harvesting, exciton dissociation and charge transport, while keeping the simple cell fabrication technology.

ternary strategy organic photovoltaics morphology regulator power conversion efficiency organic solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (61675017), Beijing Natural Science Foundation (4192049). The authors gratefully acknowledge the assistance of the Shanghai Synchrotron Radiation Facility (beamline BL16B1) for GWAIXS and GISAXS measurements.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9634_MOESM1_ESM.pdf (3.1 mb)
Over 16.7% Efficiency of Ternary Organic Photovoltaics by Employing Extra PC71BM as Morphology Regulator


  1. 1.
    Ma X, Gao W, Yu J, An Q, Zhang M, Hu Z, Wang J, Tang W, Yang C, Zhang F. Energy Environ Sci, 2018, 11: 2134–2141CrossRefGoogle Scholar
  2. 2.
    Hu Z, Wang J, Wang Z, Gao W, An Q, Zhang M, Ma X, Wang J, Miao J, Yang C, Zhang F. Nano Energy, 2019, 55: 424–432CrossRefGoogle Scholar
  3. 3.
    Xie Y, Huo L, Fan B, Fu H, Cai Y, Zhang L, Li Z, Wang Y, Ma W, Chen Y, Sun Y. Adv Funct Mater, 2018, 28: 1800627CrossRefGoogle Scholar
  4. 4.
    Xiao Z, Yang S, Yang Z, Yang J, Yip HL, Zhang F, He F, Wang T, Wang J, Yuan Y, Yang H, Wang M, Ding L. Adv Mater, 2018, 270: 1804790Google Scholar
  5. 5.
    An Q, Zhang F, Gao W, Sun Q, Zhang M, Yang C, Zhang J. Nano Energy, 2018, 45: 177–183CrossRefGoogle Scholar
  6. 6.
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027CrossRefGoogle Scholar
  7. 7.
    Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z. Nat Commun, 2016, 7: 13740PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258–265CrossRefGoogle Scholar
  9. 9.
    Gao HH, Sun Y, Wan X, Ke X, Feng H, Kan B, Wang Y, Zhang Y, Li C, Chen Y. Adv Sci, 2018, 5: 1800307CrossRefGoogle Scholar
  10. 10.
    Zhang M, Zhang F, An Q, Sun Q, Wang W, Zhang J, Tang W. Nano Energy, 2016, 22: 241–254CrossRefGoogle Scholar
  11. 11.
    Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142CrossRefGoogle Scholar
  12. 12.
    Miao J, Zhang F. Laser Photon Rev, 2019, 13: 1800204Google Scholar
  13. 13.
    Gao J, Ming R, An Q, Ma X, Zhang M, Miao J, Wang J, Yang C, Zhang F. Nano Energy, 2019, 63: 103888CrossRefGoogle Scholar
  14. 14.
    Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453CrossRefGoogle Scholar
  15. 15.
    Hu Z, Wang Z, An Q, Zhang F. Sci Bull, 2019,
  16. 16.
    Ma X, Luo M, Gao W, Yuan J, An Q, Zhang M, Hu Z, Gao J, Wang J, Zou Y, Yang C, Zhang F. J Mater Chem A, 2019, 7: 7843–7851CrossRefGoogle Scholar
  17. 17.
    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151CrossRefGoogle Scholar
  18. 18.
    Li K, Wu Y, Tang Y, Pan M-, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728CrossRefGoogle Scholar
  19. 19.
    Chen S, Lee SM, Xu J, Lee J, Lee KC, Hou T, Yang Y, Jeong M, Lee B, Cho Y, Jung S, Oh J, Zhang ZG, Zhang C, Xiao M, Li Y, Yang C. Energy Environ Sci, 2018, 11: 2569–2580CrossRefGoogle Scholar
  20. 20.
    Zhang M, Xiao Z, Gao W, Liu Q, Jin K, Wang W, Mi Y, An Q, Ma X, Liu X, Yang C, Ding L, Zhang F. Adv Energy Mater, 2018, 8: 1801968CrossRefGoogle Scholar
  21. 21.
    An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504–506CrossRefGoogle Scholar
  22. 22.
    Ma Y, Zhou X, Cai D, Tu Q, Ma W, Zheng Q. Mater Horiz, 2019,
  23. 23.
    Geng R, Song X, Feng H, Yu J, Zhang M, Gasparini N, Zhang Z, Liu F, Baran D, Tang W. ACS Energy Lett, 2019, 4: 763–770CrossRefGoogle Scholar
  24. 24.
    Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302CrossRefGoogle Scholar
  25. 25.
    Fu H, Li C, Bi P, Hao X, Liu F, Li Y, Wang Z, Sun Y. Adv Funct Mater, 2019, 29: 1807006CrossRefGoogle Scholar
  26. 26.
    Hedley G J, Ward A J, Alekseev A, Howells C T, Martins E R, Serrano L A, Cooke G, Ruseckas A, Samuel I D. Nat Commun, 2013, 4: 2867PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  28. 28.
    An M, Xie F, Geng X, Zhang J, Jiang J, Lei Z, He D, Xiao Z, Ding L. Adv Energy Mater, 2017, 7: 1602509CrossRefGoogle Scholar
  29. 29.
    Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11: 841–849CrossRefGoogle Scholar
  30. 30.
    Ma X, Xiao Z, An Q, Zhang M, Hu Z, Wang J, Ding L, Zhang F. J Mater Chem A, 2018, 6: 21485–21492CrossRefGoogle Scholar
  31. 31.
    Miao J, Zhang F. J Mater Chem C, 2019, 7: 1741–1791CrossRefGoogle Scholar
  32. 32.
    Zhang M, Zhang F, An Q, Sun Q, Wang W, Ma X, Zhang J, Tang W. J Mater Chem A, 2017, 5: 3589–3598CrossRefGoogle Scholar
  33. 33.
    Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J. ACS Energy Lett, 2018, 3: 555–561CrossRefGoogle Scholar
  34. 34.
    Jhuo HJ, Liao SH, Li YL, Yeh PN, Chen SA, Wu WR, Su CJ, Lee JJ, Yamada NL, Jeng US. Adv Funct Mater, 2016, 26: 3094–3104CrossRefGoogle Scholar
  35. 35.
    An Q, Wang J, Zhang F. Nano Energy, 2019, 60: 768–774CrossRefGoogle Scholar
  36. 36.
    Xu C, Wang J, An Q, Ma X, Hu Z, Gao J, Zhang J, Zhang F. Nano Energy, 2019, 104119Google Scholar
  37. 37.
    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J. Nano Lett, 2017, 17: 1995–2002PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hu Z, Wang Z, Zhang F. J Mater Chem A, 2019, 7: 7025–7032CrossRefGoogle Scholar
  40. 40.
    Miao J, Du M, Fang Y, Zhang X, Zhang F. Sci China Chem, 2019,
  41. 41.
    Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529–2536CrossRefGoogle Scholar
  42. 42.
    An Q, Gao W, Zhang F, Wang J, Zhang M, Wu K, Ma X, Hu Z, Jiao C, Yang C. J Mater Chem A, 2018, 6: 2468–2475CrossRefGoogle Scholar
  43. 43.
    Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313CrossRefGoogle Scholar
  44. 44.
    Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, Liu X, Zhang J, Tang W. Adv Energy Mater, 2018, 8: 1702854CrossRefGoogle Scholar
  45. 45.
    Bi P, Xiao T, Yang X, Niu M, Wen Z, Zhang K, Qin W, So SK, Lu G, Hao X, Liu H. Nano Energy, 2018, 46: 81–90CrossRefGoogle Scholar
  46. 46.
    Li W, Yan Y, Gong Y, Cai J, Cai F, Gurney RS, Liu D, Pearson AJ, Lidzey DG, Wang T. Adv Funct Mater, 2018, 28: 1704212CrossRefGoogle Scholar
  47. 47.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  48. 48.
    Zhang T, Dement DB, Ferry VE, Holmes RJ. Nat Commun, 2019, 10: 1156PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019,
  50. 50.
    Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinhua Gao
    • 1
  • Jian Wang
    • 2
  • Qiaoshi An
    • 1
  • Xiaoling Ma
    • 1
  • Zhenghao Hu
    • 1
  • Chunyu Xu
    • 1
  • Xiaoli Zhang
    • 3
  • Fujun Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of EducationBeijing Jiaotong UniversityBeijingChina
  2. 2.College of Physics and Electronic EngineeringTaishan UniversityTaianChina
  3. 3.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations