Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction

  • Bohang Zhao
  • Yi Huang
  • Dali Liu
  • Yifu Yu
  • Bin ZhangEmail author


The development of a facile strategy to construct stable hierarchal porous heterogeneous photocatalysts remains a great challenge for efficient CO2 reduction. Additionally, hole-trapping sacrificial agents (e.g., triethanolamine, triethylamine, and methanol) are mostly necessary, which produce useless chemicals, and thus cause costs/environmental concerns. Therefore, utilizing oxidation ability of holes to develop an alternative photooxidation reaction to produce value-added chemicals, especially coupled with CO2 photoreduction, is highly desirable. Here, an in situ partial phosphating method of In2O3 is reported for synthesizing InP–In2O3 p-n junction. A highly selective photooxidation of tetrahydroisoquinoline (THIQ) into value-added dihydroisoquinoline (DHIQ) is to replace the hole driven oxidation of typical sacrificial agents. Meanwhile, the photoelectrons of InP–In2O3 p-n junction can induce the efficient photoreduction of CO2 to CO with high selectivity and stability. The evolution rates of DHIQ and CO are 2 and 3.8 times higher than those of the corresponding In2O3 n-type precursor, respectively. In situ irradiated X-ray photoelectron spectroscopy and electron spin resonance are utilized to confirm that the direct Z-scheme mechanism of InP–In2O3 p-n junction accelerate the efficient separation of photocarriers.


CO2 reduction dehydrogenation photocatalysis Z-scheme tetrahydroisoquinoline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21422104), and the Natural Science Foundation of Tianjin City (17JCJQJC44700, 16JCZDJC30600).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9620_MOESM1_ESM.pdf (4.9 mb)
Integrating Photocatalytic Reduction of CO2 with Selective Oxidation of Tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n Junction


  1. 1.
    Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gao C, Chen S, Wang Y, Wang J, Zheng X, Zhu J, Song L, Zhang W, Xiong Y. Adv Mater, 2018, 30: 1704624CrossRefGoogle Scholar
  3. 3.
    Zhang A, He R, Li H, Chen Y, Kong T, Li K, Ju H, Zhu J, Zhu W, Zeng J. Angew Chem Int Ed, 2018, 57: 10954–10958CrossRefGoogle Scholar
  4. 4.
    Zeng G, Qiu J, Hou B, Shi H, Lin Y, Hettick M, Javey A, Cronin SB. Chem Eur J, 2015, 21: 13502–13507PubMedCrossRefGoogle Scholar
  5. 5.
    Bushuyev OS, De Luna P, Dinh CT, Tao L, Saur G, van de Lagemaat J, Kelley SO, Sargent EH. Joule, 2018, 2: 825–832CrossRefGoogle Scholar
  6. 6.
    Cammarota RC, Vollmer MV, Xie J, Ye J, Linehan JC, Burgess SA, Appel AM, Gagliardi L, Lu CC. J Am Chem Soc, 2017, 139: 14244–14250PubMedCrossRefGoogle Scholar
  7. 7.
    Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H. J Am Chem Soc, 2014, 136: 15969–15976PubMedCrossRefGoogle Scholar
  8. 8.
    Wang S, Guan BY, Lu Y, Lou XW. J Am Chem Soc, 2017, 139: 17305–17308PubMedCrossRefGoogle Scholar
  9. 9.
    Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kang Q, Wang T, Li P, Liu L, Chang K, Li M, Ye J. Angew Chem Int Ed, 2015, 54: 841–845CrossRefGoogle Scholar
  11. 11.
    Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew Chem Int Ed, 2012, 51: 8008–8011CrossRefGoogle Scholar
  12. 12.
    Oshima T, Ichibha T, Qin KS, Muraoka K, Vequizo JJM, Hibino K, Kuriki R, Yamashita S, Hongo K, Uchiyama T, Fujii K, Lu D, Maezono R, Yamakata A, Kato H, Kimoto K, Yashima M, Uchimoto Y, Kakihana M, Ishitani O, Kageyama H, Maeda K. Angew Chem Int Ed, 2018, 57: 8154–8158CrossRefGoogle Scholar
  13. 13.
    Cao S, Shen B, Tong T, Fu J, Yu J. Adv Funct Mater, 2018, 28: 1800136CrossRefGoogle Scholar
  14. 14.
    Yu L, Li G, Zhang X, Ba X, Shi G, Li Y, Wong PK, Yu JC, Yu Y. ACS Catal, 2016, 6: 6444–6454CrossRefGoogle Scholar
  15. 15.
    Jia J, O’Brien PG, He L, Qiao Q, Fei T, Reyes LM, Burrow TE, Dong Y, Liao K, Varela M, Pennycook SJ, Hmadeh M, Helmy AS, Kherani NP, Perovic DD, Ozin GA. Adv Sci, 2016, 3: 1600189CrossRefGoogle Scholar
  16. 16.
    Pan YX, You Y, Xin S, Li Y, Fu G, Cui Z, Men YL, Cao FF, Yu SH, Goodenough JB. J Am Chem Soc, 2017, 139: 4123–4129PubMedCrossRefGoogle Scholar
  17. 17.
    Shi H, Chen G, Zhang C, Zou Z. ACS Catal, 2014, 4: 3637–3643CrossRefGoogle Scholar
  18. 18.
    Zeng G, Qiu J, Li Z, Pavaskar P, Cronin SB. ACS Catal, 2014, 4: 3512–3516CrossRefGoogle Scholar
  19. 19.
    Li F, Chen L, Xue M, Williams T, Zhang Y, MacFarlane DR, Zhang J. Nano Energy, 2017, 31: 270–277CrossRefGoogle Scholar
  20. 20.
    Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J Am Chem Soc, 2017, 139: 6538–6541PubMedCrossRefGoogle Scholar
  21. 21.
    Nakada A, Nakashima T, Sekizawa K, Maeda K, Ishitani O. Chem Sci, 2016, 7: 4364–4371PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kuehnel MF, Orchard KL, Dalle KE, Reisner E. J Am Chem Soc, 2017, 139: 7217–7223PubMedCrossRefGoogle Scholar
  23. 23.
    Ran J, Jaroniec M, Qiao SZ. Adv Mater, 2018, 30: 1704649CrossRefGoogle Scholar
  24. 24.
    Wei N, Cui H, Song Q, Zhang L, Song X, Wang K, Zhang Y, Li J, Wen J, Tian J. Appl Catal B-Environ, 2016, 198: 83–90CrossRefGoogle Scholar
  25. 25.
    He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK, Xue C, Hu X, Pantelides ST, Zhou W, Liu Z. Adv Energy Mater, 2016, 6: 1600464CrossRefGoogle Scholar
  26. 26.
    Hong X, Kim J, Shi SF, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F. Nat Nanotech, 2014, 9: 682–686CrossRefGoogle Scholar
  27. 27.
    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Chem Soc Rev, 2014, 43: 5234–5244PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou P, Yu J, Jaroniec M. Adv Mater, 2014, 26: 4920–4935PubMedCrossRefGoogle Scholar
  29. 29.
    Li H, Tu W, Zhou Y, Zou Z. Adv Sci, 2016, 3: 1500389CrossRefGoogle Scholar
  30. 30.
    Roske CW, Popczun EJ, Seger B, Read CG, Pedersen T, Hansen O, Vesborg PCK, Brunschwig BS, Schaak RE, Chorkendorff I, Gray HB, Lewis NS. J Phys Chem Lett, 2015, 6: 1679–1683PubMedCrossRefGoogle Scholar
  31. 31.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Angew Chem Int Ed, 2013, 52: 7372–7408CrossRefGoogle Scholar
  32. 32.
    Tian J, Zhao Z, Kumar A, Boughton RI, Liu H. Chem Soc Rev, 2014, 43: 6920–6937PubMedCrossRefGoogle Scholar
  33. 33.
    Sabaté J, Cerveramarch S, Simarro R, Gimenez J. Int J Hydrogen Energy, 1990, 15: 115–124CrossRefGoogle Scholar
  34. 34.
    Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503–6570PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng M, Shi J, Yuan T, Wang X. Angew Chem Int Ed, 2018, 57: 5487–5491CrossRefGoogle Scholar
  36. 36.
    Zhao W, Liu C, Cao L, Yin X, Xu H, Zhang B. RSC Adv, 2013, 3: 22944–22948CrossRefGoogle Scholar
  37. 37.
    Kamat PV, Jin S. ACS Energy Lett, 2018, 3: 622–623CrossRefGoogle Scholar
  38. 38.
    Han G, Jin YH, Burgess RA, Dickenson NE, Cao XM, Sun Y. J Am Chem Soc, 2017, 139: 15584–15587PubMedCrossRefGoogle Scholar
  39. 39.
    He KH, Zhang WD, Yang MY, Tang KL, Qu M, Ding YS, Li Y. Org Lett, 2016, 18: 2840–2843PubMedCrossRefGoogle Scholar
  40. 40.
    Huang C, Huang Y, Liu C, Yu Y, Zhang B. Angew Chem Int Ed, 2019, 58: 12014–12017CrossRefGoogle Scholar
  41. 41.
    Kim DS, Park JW, Jun CH. Adv Synth Catal, 2013, 355: 2667–2679CrossRefGoogle Scholar
  42. 42.
    Wu J, Talwar D, Johnston S, Yan M, Xiao J. Angew Chem Int Ed, 2013, 52: 6983–6987CrossRefGoogle Scholar
  43. 43.
    Niu YN, Yan ZY, Gao GL, Wang HL, Shu XZ, Ji KG, Liang YM. J Org Chem, 2009, 74: 2893–2896PubMedCrossRefGoogle Scholar
  44. 44.
    Wu R, Xu Y, Xu R, Huang Y, Zhang B. J Mater Chem A, 2015, 3: 1930–1934CrossRefGoogle Scholar
  45. 45.
    Zhang C, Huang Y, Yu Y, Zhang J, Zhuo S, Zhang B. Chem Sci, 2017, 8: 2769–2775PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang LW, Alivisatos AP. Science, 2007, 317: 355–358PubMedCrossRefGoogle Scholar
  47. 47.
    Yu Y, Huang Y, Yu Y, Shi Y, Zhang B. Nano Energy, 2018, 43: 236–243CrossRefGoogle Scholar
  48. 48.
    Liu G, Karuturi SK, Chen H, Spiccia L, Tan HH, Jagadish C, Wang D, Simonov AN, Tricoli A. Nano Energy, 2018, 53: 745–752CrossRefGoogle Scholar
  49. 49.
    Liu Y, Li J, Li W, Yang Y, Li Y, Chen Q. J Phys Chem C, 2015, 119: 14834–14842CrossRefGoogle Scholar
  50. 50.
    Low J, Dai B, Tong T, Jiang C, Yu J. Adv Mater, 2019, 31: 1802981CrossRefGoogle Scholar
  51. 51.
    Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. Adv Mater, 2018, 30: 1706108CrossRefGoogle Scholar
  52. 52.
    Li H, Qin F, Yang Z, Cui X, Wang J, Zhang L. J Am Chem Soc, 2017, 139: 3513–3521PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bohang Zhao
    • 1
  • Yi Huang
    • 1
  • Dali Liu
    • 1
  • Yifu Yu
    • 1
    • 2
  • Bin Zhang
    • 1
    • 3
    Email author
  1. 1.Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of ScienceTianjin UniversityTianjinChina
  2. 2.Institute of Molecular PlusTianjin UniversityTianjinChina
  3. 3.Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations