Advertisement

Science China Chemistry

, Volume 62, Issue 11, pp 1497–1500 | Cite as

Photocatalytic decarboxylative coupling between α-oxocarboxylicacids and alkenes

  • Ziyue Chen
  • Fangling Lu
  • Feng Yuan
  • Juanjuan Sun
  • Linyu Du
  • Zhen Li
  • Meng GaoEmail author
  • Renyi ShiEmail author
  • Aiwen LeiEmail author
Communications

Abstract

Photocatalytic decarboxylative cross-coupling which achieves the derivatization of widespread organic acids has become a hot topic in organic synthesis. As special acids, α-oxocarboxylicacids show the great potential in running decarboxylation to construct ketone derivatives. In this article, we have developed a photocatalytic decarboxylative cross-coupling of α-oxocarboxylicacids and olefins to the synthesis of diverse aryl ketones. Various alkenes and α-oxocarboxylicacids were compatible, generating the desired products in up to 90% yield. Preliminary mechanism studies suggest that a free radical pathway is involved in this process.

Keywords

photocatalysis decarboxylative coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21520102003, 21702081, 21702152), the Hubei Province Natural Science Foundation of China (2017CFA010), and the Program of Introducing Talents of Discipline to Universities of China (111 Program).

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9616_MOESM1_ESM.pdf (2.2 mb)
Photocatalytic decarboxylative coupling between α-oxocarboxylicacids and alkenes

References

  1. 1(a).
    Serratore NA, Anderson CB, Frost GB, Hoang TG, Underwood SJ, Gemmel PM, Hardy MA, Douglas CJ. J Am Chem Soc, 2018, 140: 10025–10033PubMedGoogle Scholar
  2. (b).
    Perez-Prieto J, Galian R, Miranda M. Mini-Rev Org Chem, 2006, 3: 117–135Google Scholar
  3. 2(a).
    Liu H, Wang M, Li H, Luo N, Xu S, Wang F. J Catal, 2017, 346: 170–179Google Scholar
  4. (b).
    Trawny D, Vandromme L, Rabe JP, Reissig HU. Eur J Org Chem, 2014, 2014(23): 4985–4992Google Scholar
  5. (c).
    Namai H, Ikeda H, Kato N, Mizuno K. J Phys Chem A, 2007, 111: 4436–4442PubMedGoogle Scholar
  6. 3(a).
    Tan DW, Li HX, Zhu DL, Li HY, Young DJ, Yao JL, Lang JP. Org Lett, 2018, 20: 608–611PubMedGoogle Scholar
  7. (b).
    Genç S, Günnaz S, Çetinkaya B, Gülcemal S, Gülcemal D. J Org Chem, 2018, 83: 2875–2881PubMedGoogle Scholar
  8. (c).
    Cao XN, Wan XM, Yang FL, Li K, Hao XQ, Shao T, Zhu X, Song MP. J Org Chem, 2018, 83: 3657–3668PubMedGoogle Scholar
  9. (d).
    Zhong S, Lu Y, Zhang Y, Liu Y, Wan JP. Org Biomol Chem, 2016, 14: 6270–6273PubMedGoogle Scholar
  10. (e).
    Iwai T, Tanaka R, Sawamura M. Organometallics, 2016, 35: 3959–3969Google Scholar
  11. (f).
    Ding W, Song Q. Org Chem Front, 2016, 3: 14–18Google Scholar
  12. (g).
    Han F, Zhang X, Hu M, Jia L. Org Biomol Chem, 2015, 13: 11466–11471PubMedGoogle Scholar
  13. (h).
    Chen W, Chen H, Xiao F, Deng GJ. Org Biomol Chem, 2013, 11: 4295PubMedGoogle Scholar
  14. (i).
    Song CX, Cai GX, Farrell TR, Jiang ZP, Li H, Gan LB, Shi ZJ. Chem Commun, 2009, 90: 6002Google Scholar
  15. 4(a).
    Boroujeni KP. Chin Chem Lett, 2010, 21: 1395–1398Google Scholar
  16. (b).
    Earle MJ, Hakala U, Hardacre C, Karkkainen J, McAuley BJ, Rooney DW, Seddon KR, Thompson JM, Wahala K. Chem Commun, 2005, 1: 903–905Google Scholar
  17. (c).
    Sarvari MH, Sharghi H. J Org Chem, 2004, 69: 6953–6956PubMedGoogle Scholar
  18. (d).
    Kaur J, Kozhevnikov IV. Chem Commun, 2002, 2508–2509Google Scholar
  19. (e).
    Begtrup M, Taft RW, Kamlet MJ. J Org Chem, 1986, 51: 2130–2131Google Scholar
  20. 5(a).
    Yin H, Kumke JJ, Domino K, Skrydstrup T. ACS Catal, 2018, 8: 3853–3858Google Scholar
  21. (b).
    Zhao HY, Feng Z, Luo Z, Zhang X. Angew Chem Int Ed, 2016, 55: 10401–10405Google Scholar
  22. (c).
    Andersen TL, Frederiksen MW, Domino K, Skrydstrup T. Angew Chem Int Ed, 2016, 55: 10396–10400Google Scholar
  23. 6(a).
    Kim J, Yi CS. ACS Catal, 2016, 6: 3336–3339PubMedPubMedCentralGoogle Scholar
  24. (b).
    Murphy SK, Bruch A, Dong VM. Angew Chem Int Ed, 2014, 53: 2455–2459Google Scholar
  25. (c).
    Chen QA, Kim DK, Dong VM. J Am Chem Soc, 2014, 136: 3772–3775PubMedPubMedCentralGoogle Scholar
  26. (d).
    Matcha K, Antonchick AP. Angew Chem Int Ed, 2013, 52: 2082–2086Google Scholar
  27. (e).
    Pruet JM, Robertus JD, Anslyn EV. Tetrahedron Lett, 2010, 51: 2539–2540PubMedPubMedCentralGoogle Scholar
  28. 7(a).
    Wang XZ, Zeng CC. Tetrahedron, 2019, 75: 1425–1430Google Scholar
  29. (b).
    Wang Z, Yang M, Yang Y. Org Lett, 2018, 20: 3001–3005PubMedGoogle Scholar
  30. (c).
    Wang Q, Zhang X, Fan X. Org Biomol Chem, 2018, 16: 7737–7747PubMedGoogle Scholar
  31. (d).
    Liu W, Hu YQ, Hong XY, Li GX, Huang XB, Gao WX, Liu MC, Xia Y, Zhou YB, Wu HY. Chem Commun, 2018, 54: 14148–14151Google Scholar
  32. (e).
    Jing K, Li ZY, Wang GW. ACS Catal, 2018, 8: 11875–11881Google Scholar
  33. (f).
    Chen R, Zeng L, Huang B, Shen Y, Cui S. Org Lett, 2018, 20: 3377–3380PubMedGoogle Scholar
  34. (g).
    Bogonda G, Kim HY, Oh K. Org Lett, 2018, 20: 2711–2715PubMedGoogle Scholar
  35. (h).
    Abenante L, Penteado F, Vieira MM, Perin G, Alves D, Lenardão EJ. Ultrasons Sonochem, 2018, 49: 41–46Google Scholar
  36. (i).
    Zhu Z, Tang X, Li J, Li X, Wu W, Deng G, Jiang H. Chem Commun, 2017, 53: 3228–3231Google Scholar
  37. (j).
    Wei Y, Hu P, Zhang M, Su W. Chem Rev, 2017, 117: 8864–8907PubMedGoogle Scholar
  38. (k).
    Chaubey NR, Singh KN. Tetrahedron Lett, 2017, 58: 2347–2350Google Scholar
  39. (l).
    Mal K, Naskar S, Sen SK, Natarajan R, Das I. Adv Synth Catal, 2016, 358: 3212–3230Google Scholar
  40. (m).
    Yan K, Yang D, Wei W, Zhao J, Shuai Y, Tian L, Wang H. Org Biomol Chem, 2015, 13: 7323–7330PubMedGoogle Scholar
  41. (n).
    Rong G, Mao J, Liu D, Yan H, Zheng Y, Chen J. RSC Adv, 2015, 5: 26461–26464Google Scholar
  42. (o).
    Mao W, Zhu C. Org Lett, 2015, 17: 5710–5713PubMedGoogle Scholar
  43. (p).
    Jiang Q, Jia J, Xu B, Zhao A, Guo CC. J Org Chem, 2015, 80: 3586–3596PubMedGoogle Scholar
  44. (q).
    Kim M, Kumar Mishra N, Park J, Han S, Shin Y, Sharma S, Lee Y, Lee EK, Kwak JH, Kim IS. Chem Commun, 2014, 50: 14249–14252Google Scholar
  45. (r).
    Yang Z, Chen X, Liu J, Gui Q, Xie K, Li M, Tan Z. Chem Commun, 2013, 49: 1560–1562Google Scholar
  46. (s).
    Park J, Kim M, Sharma S, Park E, Kim A, Lee SH, Kwak JH, Jung YH, Kim IS. Chem Commun, 2013, 49: 1654–1656Google Scholar
  47. (t).
    Miao J, Ge H. Org Lett, 2013, 15: 2930–2933PubMedGoogle Scholar
  48. (u).
    Kim M, Park J, Sharma S, Kim A, Park E, Kwak JH, Jung YH, Kim IS. Chem Commun, 2013, 49: 925–927Google Scholar
  49. (v).
    Wang H, Guo LN, Duan XH. Org Lett, 2012, 14: 4358–4361PubMedGoogle Scholar
  50. (w).
    Li M, Wang C, Ge H. Org Lett, 2011, 13: 2062–2064PubMedGoogle Scholar
  51. (x).
    Collet F, Song B, Rudolphi F, Gooßen LJ. Eur J Org Chem, 2011, 2011(32): 6486–6501Google Scholar
  52. (y).
    Xiao B, Fu Y, Xu J, Gong TJ, Dai JJ, Yi J, Liu L. J Am Chem Soc, 2010, 132: 468–469PubMedGoogle Scholar
  53. (z).
    Li M, Ge H. Org Lett, 2010, 12: 3464–3467PubMedGoogle Scholar
  54. (aa).
    Fang P, Li M, Ge H. J Am Chem Soc, 2010, 132: 11898–11899PubMedGoogle Scholar
  55. (ab).
    Goossen LJ, Rudolphi F, Oppel C, Rodríguez N. Angew Chem Int Ed, 2008, 47: 3043–3045Google Scholar
  56. (ac).
    Jiang G, Wang S, Zhang J, Yu J, Zhang Z, Ji F. Adv Synth Catal, 2019, 361: 1798–1802Google Scholar
  57. 8.
    Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew Chem Int Ed, 2014, 53: 502–506Google Scholar
  58. 9(a).
    Pawar GG, Robert F, Grau E, Cramail H, Landais Y. Chem Commun, 2018, 54: 9337–9340Google Scholar
  59. (b).
    Bai QF, Jin C, He JY, Feng G. Org Lett, 2018, 20: 2172–2175PubMedGoogle Scholar
  60. (c).
    Zhang M, Xi J, Ruzi R, Li N, Wu Z, Li W, Zhu C. J Org Chem, 2017, 82: 9305–9311PubMedGoogle Scholar
  61. (d).
    Yang S, Tan H, Ji W, Zhang X, Li P, Wang L. Adv Synth Catal, 2017, 359: 443–453Google Scholar
  62. (e).
    Xu WT, Huang B, Dai JJ, Xu J, Xu HJ. Org Lett, 2016, 18: 3114–3117PubMedGoogle Scholar
  63. (f).
    Xiao T, Li L, Zhou L. J Org Chem, 2016, 81: 7908–7916PubMedGoogle Scholar
  64. (g).
    Gu L, Jin C, Liu J, Zhang H, Yuan M, Li G. Green Chem, 2016, 18: 1201–1205Google Scholar
  65. (h).
    Wang GZ, Shang R, Cheng WM, Fu Y. Org Lett, 2015, 17: 4830–4833PubMedGoogle Scholar
  66. (i).
    Chu L, Lipshultz JM, MacMillan DWC. Angew Chem Int Ed, 2015, 54: 7929–7933Google Scholar
  67. (j).
    Pan C, Jin H, Liu X, Cheng Y, Zhu C. Chem Commun, 2013, 49: 2933–2935Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Center for Carbohydrate SynthesisJiangxi Normal UniversityNanchangChina
  2. 2.The Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina

Personalised recommendations