Science China Chemistry

, Volume 62, Issue 11, pp 1519–1524 | Cite as

Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles

  • Meng Miao
  • Li-Li Liao
  • Guang-Mei Cao
  • Wen-Jun ZhouEmail author
  • Da-Gang YuEmail author


Herein we report a novel visible-light-mediated external reductant-free reductive cross coupling for the construction of C sp2–C sp3 bonds. A variety of benzylammonium salts underwent selective coupling with (hetero)aryl nitriles to deliver important diarylmethanes under mild reaction conditions. Importantly, photocatalysts can be omitted for many cases, which might involve the electron donor acceptor (EDA) complex. Mechanistic studies indicated benzylic radicals might be involved as the key intermediates. Moreover, the in situ generated NMe3 via cleavage of C–N bond in ammonium salts acts as the electron donor, thus avoiding the use of external-reductant.


reductive cross coupling visible light external-reductant-free 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21772129, 21801176), the The National Basic Research Program of China from the Minstry of Science and Technology of China (2015CB856600), Sichuan Science and Technology Program (2019YJ0379), Neijiang Normal University (KF10076) and the Fundamental Research Funds for the Central Universities (YJ201516).

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9597_MOESM1_ESM.pdf (3.6 mb)
Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles


  1. 1.
    de Meijere A, Brase S, Oestreich M. Metal Catalyzed Cross Coupling Reactions and More. Weinheim: Wiley-VCH, 2014Google Scholar
  2. 2.
    Krische MJ. Metal Catalyzed Reductive C—C Bond Formation. Berlin, Heidelberg: Springer, 2007Google Scholar
  3. 3.
    Everson DA, Weix DJ. J Org Chem, 2014, 79: 4793–4798PubMedPubMedCentralGoogle Scholar
  4. 4.
    Knappke CEI, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem Eur J, 2014, 20: 6828–6842PubMedGoogle Scholar
  5. 5.
    Moragas T, Correa A, Martin R. Chem Eur J, 2014, 20: 8242–8258PubMedGoogle Scholar
  6. 6.
    Gu J, Wang X, Xue W, Gong H. Org Chem Front, 2015, 2: 1411–1421Google Scholar
  7. 7.
    Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal, 2016, 6: 6739–6749PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang X, Dai Y, Gong H. Top Curr Chem, 2016, 374: 43–72Google Scholar
  9. 9.
    Xi Y, Yi H, Lei A. Org Biomol Chem, 2013, 11: 2387–2403PubMedGoogle Scholar
  10. 10.
    Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926PubMedPubMedCentralGoogle Scholar
  11. 11.
    Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034–10072Google Scholar
  12. 12.
    Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57Google Scholar
  13. 13.
    Xia Q, Dong J, Song H, Wang Q. Chem Eur J, 2019, 25: 2949–2961PubMedGoogle Scholar
  14. 14.
    Yeung CS. Angew Chem Int Ed, 2019, 58: 5492–5502Google Scholar
  15. 15.
    Shimomaki K, Murata K, Martin R. Iwasawa N. J Am Chem Soc, 2017, 139: 9467–9470PubMedGoogle Scholar
  16. 16.
    Duan Z, Li W, Lei A. Org Lett, 2016, 18: 4012–4015PubMedGoogle Scholar
  17. 17.
    Zhang P, Le CC, MacMillan DWC. J Am Chem Soc, 2016, 138: 8084–8087PubMedPubMedCentralGoogle Scholar
  18. 18.
    Paul A, Smith MD, Vannucci AK. J Org Chem, 2017, 82: 1996–2003PubMedGoogle Scholar
  19. 19.
    Ruan L, Dong Z, Chen C, Wu S, Sun J. Chin J Org Chem, 2017, 37: 2544–2554Google Scholar
  20. 20.
    Peng L, Li Z, Yin G. Org Lett, 2018, 20: 1880–1883PubMedGoogle Scholar
  21. 21.
    Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DWC. J Am Chem Soc, 2018, 140: 17433–17438PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ye S, Xiang T, Li X, Wu J. Org Chem Front, 2019, 6: 2183–2199Google Scholar
  23. 23.
    Zhou QQ, Düsel SJS, Lu LQ, König B, Xiao WJ. Chem Commun, 2019, 55: 107–110Google Scholar
  24. 24.
    Yu W, Chen L, Tao J, Wang T, Fu J. Chem Commun, 2019, 55: 5918–5921Google Scholar
  25. 25.
    Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J Am Chem Soc, 2013, 135: 17735–17738PubMedGoogle Scholar
  26. 26.
    Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew Chem Int Ed, 2015, 54: 8828–8832Google Scholar
  27. 27.
    Okamoto S, Kojiyama K, Tsujioka H, Sudo A. Chem Commun, 2016, 52: 11339–11342Google Scholar
  28. 28.
    Qi L, Chen Y. Angew Chem Int Ed, 2016, 55: 13312–13315Google Scholar
  29. 29.
    Zhu J, Yuan Y, Wang S, Yao ZJ. ACS Omega, 2017, 2: 4665–4677PubMedPubMedCentralGoogle Scholar
  30. 30.
    Okamoto S, Ariki R, Tsujioka H, Sudo A. J Org Chem, 2017, 82: 9731–9736PubMedGoogle Scholar
  31. 31.
    Lee KN, Lei Z, Ngai MY. J Am Chem Soc, 2017, 139: 5003–5006PubMedPubMedCentralGoogle Scholar
  32. 32.
    Chen M, Zhao X, Yang C, Xia W. Org Lett, 2017, 19: 3807–3810PubMedGoogle Scholar
  33. 33.
    Liu Z, Nan X, Lei T, Zhou C, Wang Y, Liu W, Chen B, Tung C, Wu L. Chin J Catal, 2018, 39: 487–494Google Scholar
  34. 34.
    Ye CX, Melcamu YY, Li HH, Cheng JT, Zhang TT, Ruan YP, Zheng X, Lu X, Huang PQ. Nat Commun, 2018, 9: 410–419PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang R, Ma M, Gong X, Fan X, Walsh PJ. Org Lett, 2019, 21: 27–31PubMedGoogle Scholar
  36. 36.
    Berger AL, Donabauer K, König B. Chem Sci, 2018, 9: 7230–7235PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tarantino KT, Liu P, Knowles RR. J Am Chem Soc, 2013, 135: 10022–10025PubMedGoogle Scholar
  38. 38.
    Fava E, Nakajima M, Nguyen ALP, Rueping M. J Org Chem, 2016, 81: 6959–6964PubMedPubMedCentralGoogle Scholar
  39. 39.
    Qiu G, Knowles RR. J Am Chem Soc, 2019, 141: 2721–2730PubMedGoogle Scholar
  40. 40.
    Ju T, Fu Q, Ye JH, Zhang Z, Liao LL, Yan SS, Tian XY, Luo SP, Li J, Yu DG, Angew Chem Int Ed, 2018, 57: 13897–13901Google Scholar
  41. 41.
    Ouyang K, Hao W, Zhang WX, Xi Z. Chem Rev, 2015, 115: 12045–12090PubMedGoogle Scholar
  42. 42.
    Liao LL, Cao GM, Ye JH, Sun GQ, Zhou WJ, Gui YY, Yan SS, Shen G, Yu DG. J Am Chem Soc, 2018, 140: 17338–17342PubMedGoogle Scholar
  43. 43.
    Messaoudi S, Hamze A, Provot O, Tréguier B, Rodrigo De Losada J, Bignon J, Liu JM, Wdzieczak-Bakala J, Thoret S, Dubois J, Brion JD, Alami M. ChemMedChem, 2011, 6: 488–497PubMedGoogle Scholar
  44. 44.
    Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu SY, Ahn KH, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S. J Med Chem, 2012, 55: 7828–7840PubMedGoogle Scholar
  45. 45.
    Tao L, Wang J, Zeng J, Gao GL, Yang C, Xia W. J Photochem Photobiol A-Chem, 2018, 355: 298–304Google Scholar
  46. 46.
    McNally A, Prier CK, MacMillan DWC. Science, 2011, 334: 1114–1117PubMedPubMedCentralGoogle Scholar
  47. 47.
    Pirnot MT, Rankic DA, Martin DBC, MacMillan DWC. Science, 2013, 339: 1593–1596PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zuo Z, MacMillan DWC. J Am Chem Soc, 2014, 136: 5257–5260PubMedPubMedCentralGoogle Scholar
  49. 49.
    Cuthbertson JD, MacMillan DWC. Nature, 2015, 519: 74–77PubMedPubMedCentralGoogle Scholar
  50. 50.
    Yan C, Li L, Liu Y, Wang Q. Org Lett, 2016, 18: 4686–4689PubMedGoogle Scholar
  51. 51.
    Nakajima K, Nojima S, Sakata K, Nishibayashi Y. ChemCatChem, 2016, 8: 1028–1032Google Scholar
  52. 52.
    Xie J, Jin H, Hashmi ASK. Chem Soc Rev, 2017, 46: 5193–5203PubMedGoogle Scholar
  53. 53.
    Vega JA, Alonso JM, Méndez G, Ciordia M, Delgado F, Trabanco AA. Org Lett, 2017, 19: 938–941PubMedGoogle Scholar
  54. 54.
    Yoshimi Y. J Photochem Photobiol A-Chem, 2017, 342: 116–130Google Scholar
  55. 55.
    Chen D, Xu L, Long T, Zhu S, Yang J, Chu L. Chem Sci, 2018, 9: 9012–9017PubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen Y, Lu P, Wang Y. Org Lett, 2019, 21: 2130–2133PubMedGoogle Scholar
  57. 57.
    Zhu S, Qin J, Wang F, Li H, Chu L. Nat Commun, 2019, 10: 749–755PubMedPubMedCentralGoogle Scholar
  58. 58.
    Chen J, Zhu S, Qin J, Chu L. Chem Commun, 2019, 55: 2336–2339Google Scholar
  59. 59.
    Rosokha SV, Kochi JK. Acc Chem Res, 2008, 41: 641–653PubMedGoogle Scholar
  60. 60.
    Lima CGS, de M. Lima T, Duarte M, Jurberg ID, Paixão MW. ACS Catal, 2016, 6: 1389–1407Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan UniversityChengduChina
  2. 2.College of Chemistry and Chemical EngineeringNeijiang Normal UniversityNeijiangChina

Personalised recommendations