Active sites in CO2 hydrogenation over confined VOx-Rh catalysts

  • Guishuo Wang
  • Ran Luo
  • Chengsheng Yang
  • Jimin Song
  • Chuanye Xiong
  • Hao Tian
  • Zhi-Jian Zhao
  • Rentao MuEmail author
  • Jinlong GongEmail author


Metal oxide-promoted Rh-based catalysts have been widely used for CO2 hydrogenation, especially for the ethanol synthesis. However, this reaction usually suffers low CO2 conversion and alcohols selectivity due to the formation of byproducts methane and CO. This paper describes an efficient vanadium oxide promoted Rh-based catalysts confined in mesopore MCM-41. The Rh-0.3VOx/MCM-41 catalyst shows superior conversion (~12%) and ethanol selectivity (~24%) for CO2 hydrogenation. The promoting effect can be attributed to the synergism of high Rh dispersion by the confinement effect of MCM-41 and the formation of VOx-Rh interface sites. Experimental and theoretical results indicate the formation of til-CO at VOx-Rh interface sites is easily dissociated into *CHx, and then *CHx can be inserted by CO to form CH3CO*, followed by CH3CO* hydrogenation to ethanol.


interfacial active sites CO2 hydrogenation ethanol Rh-based catalysts confined catalysts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21525626, 21603159, 21676181), and the Program of Introducing Talents of Discipline to Universities (B06006).

Supplementary material

11426_2019_9590_MOESM1_ESM.pdf (938 kb)
Active sites in CO2 hydrogenation over confined VOx-Rh catalysts


  1. 1.
    Wang W, Wang S, Ma X, Gong J. Chem Soc Rev, 2011, 40: 3703PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Porosoff MD, Yan B, Chen JG. Energy Environ Sci, 2016, 9: 62–73CrossRefGoogle Scholar
  3. 3.
    Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y. Catal Sci Technol, 2017, 7: 4580–4598CrossRefGoogle Scholar
  4. 4.
    Aresta M, Dibenedetto A, Angelini A. Chem Rev, 2014, 114: 1709–1742PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Devarapalli M, Atiyeh HK. Biofuel Res J, 2015, 2: 268–280CrossRefGoogle Scholar
  6. 6.
    Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J. Chem Soc Rev, 2017, 46: 1358–1426PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim JG, Meng X, Xiao FS. Angew Chem Int Ed, 2018, 57: 6104–6108CrossRefGoogle Scholar
  8. 8.
    He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 737–741CrossRefGoogle Scholar
  9. 9.
    Inui T, Yamamoto T, Inoue M, Hara H, Takeguchi T, Kim JB. Appl Catal A-Gen, 1999, 186: 395–406CrossRefGoogle Scholar
  10. 10.
    Takagawa M, Okamoto A, Fujimura H, Izawa Y, Arakawa H. Stud Surf Sci Catal, 1998, 114: 525–528CrossRefGoogle Scholar
  11. 11.
    Higuchi K, Haneda Y, Tabata K, Nakahara Y, Takagawa M. Stud Surf Sci Catal, 1998, 114: 517–520CrossRefGoogle Scholar
  12. 12.
    Li S, Guo H, Luo C, Zhang H, Xiong L, Chen X, Ma L. Catal Lett, 2013, 143: 345–355CrossRefGoogle Scholar
  13. 13.
    Kusama H, Okabe K, Sayama K, Arakawa H. Appl Organometal Chem, 2000, 14: 836–840CrossRefGoogle Scholar
  14. 14.
    Kitamura Bando K, Soga K, Kunimori K, Arakawa H. Appl Catal A-Gen, 1998, 175: 67–81CrossRefGoogle Scholar
  15. 15.
    Kusama H, Okabe K, Sayama K, Arakawa H. Energy, 1997, 22: 343–348CrossRefGoogle Scholar
  16. 16.
    Kusama H, Okabe K, Sayama K, Arakawa H. Catal Today, 1996, 28: 261–266CrossRefGoogle Scholar
  17. 17.
    Kusama H, Bando KK, Okabe K, Arakawa H. Appl Catal A-Gen, 2001, 205: 285–294CrossRefGoogle Scholar
  18. 18.
    Kusama H, Okabe K, Arakawa H. Appl Catal A-Gen, 2001, 207: 85–94CrossRefGoogle Scholar
  19. 19.
    Yang C, Mu R, Wang G, Song J, Tian H, Zhao ZJ, Gong J. Chem Sci, 2019, 10: 3161–3167PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Carrillo P, Shi R, Teeluck K, Senanayake SD, White MG. ACS Catal, 2018, 8: 7279–7286CrossRefGoogle Scholar
  21. 21.
    Palomino RM, Magee JW, Llorca J, Senanayake SD, White MG. J Catal, 2015, 329: 87–94CrossRefGoogle Scholar
  22. 22.
    Wang Y, Luo H, Liang D, Bao X. J Catal, 2000, 196: 46–55CrossRefGoogle Scholar
  23. 23.
    Yang N, Yoo JS, Schumann J, Bothra P, Singh JA, Valle E, Abild-Pedersen F, Nørskov JK, Bent SF. ACS Catal, 2017, 7: 5746–5757CrossRefGoogle Scholar
  24. 24.
    Prieto G, Concepción P, Martínez A, Mendoza E. J Catal, 2011, 280: 274–288CrossRefGoogle Scholar
  25. 25.
    Chen Y, Zhang H, Ma H, Qian W, Jin F, Ying W. Catal Lett, 2018, 148: 691–698CrossRefGoogle Scholar
  26. 26.
    Schwartz V, Campos A, Egbebi A, Spivey JJ, Overbury SH. ACS Catal, 2011, 1: 1298–1306CrossRefGoogle Scholar
  27. 27.
    Mo X, Gao J, Umnajkaseam N, Goodwin Jr. JG. J Catal, 2009, 267: 167–176CrossRefGoogle Scholar
  28. 28.
    Matsubu JC, Yang VN, Christopher P. J Am Chem Soc, 2015, 137: 3076–3084PubMedCrossRefGoogle Scholar
  29. 29.
    Arakawa H, Takeuchi K, Matsuzaki T, Sugi Y. Chem Lett, 1984, 13: 1607–1610CrossRefGoogle Scholar
  30. 30.
    Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  34. 34.
    Henkelman G, Uberuaga BP, Jónsson H. J Chem Phys, 2000, 113: 9901–9904CrossRefGoogle Scholar
  35. 35.
    Wu Z, Kim HS, Stair PC, Rugmini S, Jackson SD. J Phys Chem B, 2005, 109: 2793–2800PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Liu G, Zhao ZJ, Wu T, Zeng L, Gong J. ACS Catal, 2016, 6: 5207–5214CrossRefGoogle Scholar
  37. 37.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat Mater, 2007, 6: 507–511PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bulánek R, Čičmanec P, Setnička M. Phys Procedia, 2013, 44: 195–205CrossRefGoogle Scholar
  39. 39.
    Kip BJ, Smeets PAT, van Grondelle J, Prins R. Appl Catal, 1987, 33: 181–208CrossRefGoogle Scholar
  40. 40.
    Beutel T, Siborov V, Tesche B, Knözinger H. J Catal, 1997, 167: 379–390CrossRefGoogle Scholar
  41. 41.
    Yamagishi T, Furikado I, Ito S, Miyao T, Naito S, Tomishige K, Kunimori K. J Mol Catal A-Chem, 2006, 244: 201–212CrossRefGoogle Scholar
  42. 42.
    Liu Y, Göeltl F, Ro I, Ball MR, Sener C, Aragão IB, Zanchet D, Huber GW, Mavrikakis M, Dumesic JA. ACS Catal, 2017, 7: 4550–4563CrossRefGoogle Scholar
  43. 43.
    Zhang W, Wang L, Liu H, Hao Y, Li H, Khan MU, Zeng J. Nano Lett, 2017, 17: 788–793PubMedCrossRefGoogle Scholar
  44. 44.
    Swapnesh A, Srivastava VC, Mall ID. Chem Eng Technol, 2014, 37: 1765–1777CrossRefGoogle Scholar
  45. 45.
    He X. Int J Oil Gas Coal Eng, 2017, 5: 145–152CrossRefGoogle Scholar
  46. 46.
    Heyl D, Rodemerck U, Bentrup U. ACS Catal, 2016, 6: 6275–6284CrossRefGoogle Scholar
  47. 47.
    Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P. Nat Chem, 2017, 9: 120–127PubMedCrossRefGoogle Scholar
  48. 48.
    Stevenson SA, Lisitsyn A, Knoezinger H. J Phys Chem, 1990, 94: 1576–1581CrossRefGoogle Scholar
  49. 49.
    Wang Y, Song Z, Ma D, Luo H, Liang D, Bao X. J Mol Catal A-Chem, 1999, 149: 51–61CrossRefGoogle Scholar
  50. 50.
    Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA. Science, 2014, 345: 546–550PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X, Hong Y, Shi H, Szanyi J. J Catal, 2016, 343: 185–195CrossRefGoogle Scholar
  53. 53.
    Chen Y, Choi S, Thompson LT. J Catal, 2016, 343: 147–156CrossRefGoogle Scholar
  54. 54.
    Schweicher J, Bundhoo A, Kruse N. J Am Chem Soc, 2012, 134: 16135–16138PubMedCrossRefGoogle Scholar
  55. 55.
    Zhao YH, Sun K, Ma X, Liu J, Sun D, Su HY, Li WX. Angew Chem Int Ed, 2011, 50: 5335–5338CrossRefGoogle Scholar
  56. 56.
    Kusama H, Bando KK, Okabe K, Arakawa H. Appl Catal A-Gen, 2000, 197: 255–268CrossRefGoogle Scholar
  57. 57.
    Sun J, Cai Q, Wan Y, Wan S, Wang L, Lin J, Mei D, Wang Y. ACS Catal, 2016, 6: 5771–5785CrossRefGoogle Scholar
  58. 58.
    Kattel S, Yu W, Yang X, Yan B, Huang Y, Wan W, Liu P, Chen JG. Angew Chem Int Ed, 2016, 55: 7968–7973CrossRefGoogle Scholar
  59. 59.
    Kattel S, Liu P, Chen JG. J Am Chem Soc, 2017, 139: 9739–9754PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guishuo Wang
    • 1
  • Ran Luo
    • 1
  • Chengsheng Yang
    • 1
  • Jimin Song
    • 1
  • Chuanye Xiong
    • 1
  • Hao Tian
    • 1
  • Zhi-Jian Zhao
    • 1
  • Rentao Mu
    • 1
    Email author
  • Jinlong Gong
    • 1
    Email author
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin University; Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations