Advertisement

Science China Chemistry

, Volume 62, Issue 11, pp 1450–1462 | Cite as

The xanthate route to all-carbon quaternary centers

  • Béatrice Quiclet-Sire
  • Samir Z. ZardEmail author
Reviews

Abstract

This review discusses the numerous routes to all-carbon quaternary centers based on the unique radical chemistry of xanthates. It summarizes the various approaches to the synthesis of tertiary xanthates then describes the intra- and intermolecular radical additions and combinations thereof that have so far been used to construct quaternary centers.

Keywords

xanthates quaternary centers radical addition cyclization tandem reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are greatly indebted to our students and collaborators, whose names appear in the references, and were instrumental to their success of the various projects through their dedication, enthusiasm, and skill. We also thank the following organisations and companies who have provided financial support over the years: Ecole Polytechnique, CNRS, DGA, MNRT, The Fondation Alfred Kastler, the Royal Commission for the Exhibition of 1851, the China Research Council, Aventis (now Sanofi), Rhodia (now Solvay), and Syngenta.

References

  1. 1.
    Fuji K. Chem Rev, 1993, 93: 2037–2066Google Scholar
  2. 2.
    Denissova I, Barriault L. Tetrahedron, 2003, 59: 10105–10146Google Scholar
  3. 3.
    Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew Chem Int Ed, 2016, 55: 4156–4186Google Scholar
  4. 4.
    Zard SZ. Radical Reactions in Organic Synthesis. Oxford: Oxford University Press, 2003Google Scholar
  5. 5.
    Quiclet-Sire B, Zard SZ. The degenerative radical transfer of xanthates and related derivatives: an unusually powerful tool for the creation of carbon–carbon bonds. In: Gansäuer A, Ed. Radicals in Synthesis II. Topics in Current Chemistry, Vol. 264. Berlin, Heidelberg: Springer, 2006. 201–236Google Scholar
  6. 6.
    Quiclet-Sire B, Zard SZ. Pure Appl Chem, 2010, 83: 519–551Google Scholar
  7. 7.
    Quiclet-Sire B, Zard SZ. Isr J Chem, 2017, 57: 202–217Google Scholar
  8. 8.
    Zard SZ. Helv Chim Aata, 2019, 102: doi:  https://doi.org/10.1002/hlca.201900134
  9. 9.
    Field L, Beauchamp Jr. RO. J Am Chem Soc, 1952, 74: 4707–4708Google Scholar
  10. 10.
    Johnson IJ, Khosravi E, Musa OM, Simnett RE, Eissa AM. J Polym Sci Part A-Polym Chem, 2015, 53: 775–786Google Scholar
  11. 11.
    Hirano T, Hasumi Y, Ohtsuka K, Maki S, Niwa H, Yamaji M, Hashizume D. J Am Chem Soc, 2009, 131: 2385–2396PubMedGoogle Scholar
  12. 12.
    Heng R, Quiclet-Sire B, Zard SZ. Tetrahedron Lett, 2009, 50: 3613–3616Google Scholar
  13. 13.
    Matsui S. Bull Chem Soc Jpn, 1987, 60: 1853–1865Google Scholar
  14. 14.
    Fabre S, Vila X, Zard SZ. Chem Commun, 2006, 36: 4964Google Scholar
  15. 15.
    Maslak V, Cekovic Ž, Saicic RN. Synlett, 1998: 1435–1437Google Scholar
  16. 16.
    Kreutzkamp N, Peschel H. Pharmazie, 1970, 25: 322–325PubMedGoogle Scholar
  17. 17.
    Binot G, Quiclet-Sire B, Saleh T, Zard SZ. Synlett, 2003: 382–386Google Scholar
  18. 18.
    Charrier N, Gravestock D, Zard SZ. Angew Chem Int Ed, 2006, 45: 6520–6523Google Scholar
  19. 19.
    Legrand N, Quiclet-Sire B, Zard SZ. Tetrahedron Lett, 2000, 41: 9815–9818Google Scholar
  20. 20.
    Anthore-Dalion L, Liu Q, Zard SZ. J Am Chem Soc, 2016, 138: 8404–8407PubMedGoogle Scholar
  21. 21.
    Liard A, Quiclet-Sire B, Saicic RN, Zard SZ. Tetrahedron Lett, 1997, 38: 1759–1762Google Scholar
  22. 22.
    Charrier N, Zard SZ. Angew Chem Int Ed, 2008, 47: 9443–9446Google Scholar
  23. 23.
    Braun MG, Heng R, Zard SZ. Org Lett, 2011, 13: 1230–1233PubMedGoogle Scholar
  24. 24.
    Kaga A, Wu X, Lim JYJ, Hayashi H, Lu Y, Yeow EKL, Chiba S. Beilstein J Org Chem, 2018, 14: 3047–3058PubMedPubMedCentralGoogle Scholar
  25. 25.
    Quiclet-Sire B, Zard SZ. Org Lett, 2008, 10: 3279–3282PubMedGoogle Scholar
  26. 26.
    Quiclet-Sire B, Zard SZ. Heterocycles, 2010, 82: 263–271Google Scholar
  27. 27.
    Tournier L, Zard SZ. Tetrahedron Lett, 2005, 46: 971–973Google Scholar
  28. 28.
    Anthore L, Li S, White LV, Zard SZ. Org Lett, 2015, 17: 5320–5323PubMedGoogle Scholar
  29. 29.
    Mougin C, Sançon J, Zard SZ. Heterocycles, 2007, 74: 211–218Google Scholar
  30. 30.
    Barton DHR, George MV, Tomoeda M. J Chem Soc, 1962, 1967–1974Google Scholar
  31. 31.
    Revil-Baudard VL, Vors JP, Zard SZ. Org Lett, 2018, 20: 3531–3535PubMedGoogle Scholar
  32. 32.
    Dolle RE, Gribble A, Wilkes T, Kruse LI, Eggleston D, Saxty BA, Wells TNC, Groot PHE. J Med Chem, 1995, 38: 537–543PubMedGoogle Scholar
  33. 33.
    Forbes JE, Zard SZ. J Am Chem Soc, 1990, 112: 2034–2036Google Scholar
  34. 34.
    Bouhadir G, Legrand N, Quiclet-Sire B, Zard SZ. Tetrahedron Lett, 1999, 40: 277–280Google Scholar
  35. 35.
    Thang SH, Chong BYK, Mayadunne RTA, Moad G, Rizzardo E. Tetrahedron Lett, 1999, 40: 2435–2438Google Scholar
  36. 36.
    Alberti A, Benaglia M, Laus M, Sparnacci K. J Org Chem, 2002, 67: 7911–7914PubMedGoogle Scholar
  37. 37.
    Czaplyski WL, Na CG, Alexanian EJ. J Am Chem Soc, 2016, 138: 13854–13857PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ayer SK, Roizen JL. J Org Chem, 2019, 84: 3508–3523PubMedGoogle Scholar
  39. 39.
    Boivin J, Camara J, Zard SZ. J Am Chem Soc, 1992, 114: 7909–7910Google Scholar
  40. 40.
    Denieul MP. Nouvelles utilisations des dithiocarbonates comme source de radicaux stannyles, propargyles et trifluoromethyles. Dissertation for the Doctoral Degree. Orsay: Université Paris-Sud, 1998Google Scholar
  41. 41.
    Noveon IP Holdings Corp. Toughened vinyl ester resins. World Patent, WO2005/80326, 2005Google Scholar
  42. 42.
    Bacqué E, El Qacemi M, Zard SZ. Org Lett, 2005, 7: 3817–3820PubMedGoogle Scholar
  43. 43.
    Ibarra-Rivera TR, Gámez-Montaño R, Miranda LD. Chem Commun, 2007, 44: 3485Google Scholar
  44. 44.
    Gámez-Montaño R, Ibarra-Rivera TR, El Kaim L, Miranda, LD. Synlett, 2010: 1285–1290Google Scholar
  45. 45.
    Gordillo-Cruz RE, Islas-Jácome A, Rentería-Gómez Á, Mera-Zambrano E, Ibarra-Rivera T, Jimenez-Halla JOC, Miranda-Gutiérrez LD, Gámez-Montaño R. Monatsh Chem, 2015, 146: 987–995Google Scholar
  46. 46.
    Millán-Ortiz A, López-Valdez G, Cortez-Guzmán F, Miranda LD. Chem Commun, 2015, 51: 8345–8348Google Scholar
  47. 47.
    Heng R, Zard SZ. Org Biomol Chem, 2011, 9: 3396–3404PubMedGoogle Scholar
  48. 48.
    Boiteau L, Boivin J, Liard A, Quiclet-Sire B, Zard SZ. Angew Chem Int Ed, 1998, 37: 1128–1131Google Scholar
  49. 49.
    Olguín-Uribe S, Mijangos MV, Amador-Sánchez YA, Sánchez-Carmona MA, Miranda LD. Eur J Org Chem, 2017, 2017: 2481–2485Google Scholar
  50. 50.
    Biechy A, Zard SZ. Org Lett, 2009, 11: 2800–2803PubMedGoogle Scholar
  51. 51.
    Magolan J, Carson CA, Kerr MA. Org Lett, 2008, 10: 1437–1440PubMedGoogle Scholar
  52. 52.
    Paleo E, Osornio YM, Miranda LD. Org Biomol Chem, 2011, 9: 361–362PubMedGoogle Scholar
  53. 53.
    Wang S, Huang X, Li B, Ge Z, Wang X, Li R. Tetrahedron, 2015, 71: 1869–1875Google Scholar
  54. 54.
    Wang S, Huang X, Wen Y, Ge Z, Wang X, Li R. Tetrahedron, 2015, 71: 8117–8122Google Scholar
  55. 55.
    Jenkins EN, Czaplyski WL, Alexanian EJ. Org Lett, 2017, 19: 2350–2353PubMedGoogle Scholar
  56. 56.
    Moutrille C, Zard SZ. Chem Commun, 2004, 1848–1849Google Scholar
  57. 57.
    Quiclet-Sire B, Revol G, Zard SZ. Tetrahedron, 2010, 66: 6656–6666Google Scholar
  58. 58.
    Quiclet-Sire B, Zard S. Synlett, 2016, 27: 680–701Google Scholar
  59. 59.
    Braun MG, Zard SZ. Org Lett, 2011, 13: 776–779PubMedGoogle Scholar
  60. 60.
    Li SG, Portela-Cubillo F, Zard SZ. Org Lett, 2016, 18: 1888–1891PubMedGoogle Scholar
  61. 61.
    Huang Q, Zard SZ. Org Lett, 2018, 20: 5304–5308PubMedGoogle Scholar
  62. 62.
    Huang Q, Michalland J, Zard SZ. Angew Chem Int Ed, 2019, 47: doi:  https://doi.org/10.1002/anie.201906497 Google Scholar
  63. 63.
    Delduc P, Tailhan C, Zard SZ. J Chem Soc Chem Commun, 1988, 308–310Google Scholar
  64. 64.
    Charrier N, Quiclet-Sire B, Zard SZ. J Am Chem Soc, 2008, 130: 8898–8899PubMedGoogle Scholar
  65. 65.
    Debien L, Quiclet-Sire B, Zard SZ. Acc Chem Res, 2015, 48: 1237–1253PubMedGoogle Scholar
  66. 66.
    Brioche J, Michalak M, Quiclet-Sire B, Zard SZ. Org Lett, 2011, 13: 6296–6299PubMedGoogle Scholar
  67. 67.
    Debien L, Braun MG, Quiclet-Sire B, Zard SZ. Org Lett, 2013, 15: 6250–6253PubMedGoogle Scholar
  68. 68.
    Debien L, Quiclet-Sire B, Zard SS. Org Lett, 2012, 14: 5118–5121PubMedGoogle Scholar
  69. 69.
    Quiclet-Sire B, Seguin S, Zard SZ. Angew Chem Int Ed, 1998, 37: 2864–2866Google Scholar
  70. 70.
    Bertrand F, Quiclet-Sire B, Zard SZ. Angew Chem Int Ed, 1999, 38: 1943–1946Google Scholar
  71. 71.
    Beniazza R, Liautard V, Poittevin C, Ovadia B, Mohammed S, Robert F, Landais Y. Chem Eur J, 2017, 23: 2439–2447PubMedGoogle Scholar
  72. 72.
    Liautard V, Robert F, Landais Y. Org Lett, 2011, 13: 2658–2661PubMedGoogle Scholar
  73. 73.
    Poittevin C, Liautard V, Beniazza R, Robert F, Landais Y. Org Lett, 2013, 15: 2814–2817PubMedGoogle Scholar
  74. 74.
    Landais Y, Robert F, Godineau E, Huet L, Likhite N. Tetrahedron, 2013, 69: 10073–10080Google Scholar
  75. 75.
    Hassan H, Mohammed S, Robert F, Landais Y. Org Lett, 2015, 17: 4518–4521PubMedGoogle Scholar
  76. 76.
    Boiteau L, Boivin J, Quiclet-Sire B, Saunier JB, Zard SZ. Tetrahedron, 1998, 54: 2087–2098Google Scholar
  77. 77.
    Ouvry G, Zard SZ. Synlett, 2003: 1627–1630Google Scholar
  78. 78.
    Bagal SK, Tournier L, Zard SZ. Synlett, 2006: 1485–1490Google Scholar
  79. 79.
    Briggs ME, El Qacemi M, Kalaï C, Zard SZ. Tetrahedron Lett, 2004, 45: 6017–6020Google Scholar
  80. 80.
    Moutrille C, Zard SZ. Tetrahedron Lett, 2004, 45: 4631–4634Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Synthèse OrganiqueEcole PolytechniquePalaiseauFrance

Personalised recommendations