Advertisement

Photomultiplication type all-polymer photodetectors with single carrier transport property

  • Jianli Miao
  • Mingde Du
  • Ying Fang
  • Xiaoli Zhang
  • Fujun ZhangEmail author
Comunications
  • 12 Downloads

Abstract

Photomultiplication (PM) type all-polymer photodetectors (all-PPDs) are first demonstrated with the sandwich structure of ITO/PEDOT:PSS/PBDB-T:PZ1 (100:x, wt/wt)/Al. The optimal PM type all-PPDs with PBDB-T:PZ1 (100:3, wt/wt) as active layers exhibit external quantum efficiency (EQE) of >100% in the spectral range from 310 to 790 nm. Under 675 nm light illumination, the champion EQE value arrives to 1,470% at −20 V bias and the specific detectivity approaches 1×1012 Jones at −10 V bias. The PM phenomenon in all-PPDs results from hole tunneling injection assisted by interfacial band bending induced by trapped electrons in PZ1 near Al electrode. The EQE values of optimal PM type all-PPDs still remained over 90% of the original value after 60 d of the storage in a high-purity nitrogen-filled glove box.

Keywords

photomultiplication all-polymer photodetectors tunneling injection stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019YJS207).

Supplementary material

11426_2019_9582_MOESM1_ESM.pdf (449 kb)
Photomultiplication type all-polymer photodetectors with single carrier transport property

References

  1. 1.
    Chen HY, Lo MKF, Yang G, Monbouquette HG, Yang Y. Nat Nanotech, 2008, 3: 543–547CrossRefGoogle Scholar
  2. 2.
    Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J. Nat Nanotech, 2012, 7: 798–802CrossRefGoogle Scholar
  3. 3.
    Luo X, Lv W, Du L, Zhao F, Peng Y, Wang Y, Tang Y. Phys Status Solidi RRL, 2016, 10: 485–492CrossRefGoogle Scholar
  4. 4.
    Miao J, Zhang F. Laser Photonics Rev, 2019, 13: 1800204Google Scholar
  5. 5.
    Alvarado SF, Seidler PF, Lidzey DG, Bradley DDC. Phys Rev Lett, 1998, 81: 1082–1085CrossRefGoogle Scholar
  6. 6.
    Reynaert J, Arkhipov V, Heremans P, Poortmans J. Adv Funct Mater, 2006, 16: 784–790CrossRefGoogle Scholar
  7. 7.
    Chuang ST, Chien SC, Chen FC. Appl Phys Lett, 2012, 100: 013309CrossRefGoogle Scholar
  8. 8.
    Shen L, Fang Y, Wei H, Yuan Y, Huang J. Adv Mater, 2016, 28: 2043–2048CrossRefGoogle Scholar
  9. 9.
    Li L, Zhang F, Wang J, An Q, Sun Q, Wang W, Zhang J, Teng F. Sci Rep, 2015, 5: 9181CrossRefGoogle Scholar
  10. 10.
    Wang W, Zhang F, Li L, Gao M, Hu B. ACS Appl Mater Interfaces, 2015, 7: 22660–22668CrossRefGoogle Scholar
  11. 11.
    Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M. ACS Appl Mater Interfaces, 2015, 7: 5890–5897CrossRefGoogle Scholar
  12. 12.
    Wang W, Zhang F, Li L, Zhang M, An Q, Wang J, Sun Q. J Mater Chem C, 2015, 3: 7386–7393CrossRefGoogle Scholar
  13. 13.
    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J. Nano Lett, 2017, 17: 1995–2002CrossRefGoogle Scholar
  14. 14.
    Miao J, Zhang F, Du M, Wang W, Fang Y. Adv Opt Mater, 2018, 6: 1800001CrossRefGoogle Scholar
  15. 15.
    Miao J, Zhang F, Du M, Wang W, Fang Y. Phys Chem Chem Phys, 2017, 19: 14424–14430CrossRefGoogle Scholar
  16. 16.
    Wang W, Du M, Zhang M, Miao J, Fang Y, Zhang F. Adv Opt Mater, 2018, 6: 1800249CrossRefGoogle Scholar
  17. 17.
    Miao J, Zhang F, Lin Y, Wang W, Gao M, Li L, Zhang J, Zhan X. Adv Opt Mater, 2016, 4: 1711–1717CrossRefGoogle Scholar
  18. 18.
    Jang MS, Yoon S, Sim KM, Cho J, Chung DS. J Phys Chem Lett, 2018, 9: 8–12CrossRefGoogle Scholar
  19. 19.
    Tang F, Wang C, Chen Q, Lai J, Wang W, Zhang F, Chen L. Appl Phys Lett, 2018, 113: 043303CrossRefGoogle Scholar
  20. 20.
    Wang J, Zheng Q. J Mater Chem C, 2019, 7: 1544–1550CrossRefGoogle Scholar
  21. 21.
    Wang W, Zhang F, Bai H, Li L, Gao M, Zhang M, Zhan X. Nanoscale, 2016, 8: 5578–5586CrossRefGoogle Scholar
  22. 22.
    Xu X, Zhou X, Zhou K, Xia Y, Ma W, Inganäs O. Adv Funct Mater, 2018, 28: 1805570CrossRefGoogle Scholar
  23. 23.
    Hu L, Qiao W, Han J, Zhou X, Wang C, Ma D, Wang ZY, Li Y. Polym Chem, 2017, 8: 528–536CrossRefGoogle Scholar
  24. 24.
    Hu Z, Wang J, Wang Z, Gao W, An Q, Zhang M, Ma X, Wang J, Miao J, Yang C, Zhang F. Nano Energy, 2019, 55: 424–432CrossRefGoogle Scholar
  25. 25.
    Zhong Z, Li K, Zhang J, Ying L, Xie R, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11: 14208–14214CrossRefGoogle Scholar
  26. 26.
    An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504–506CrossRefGoogle Scholar
  27. 27.
    Murto P, Genene Z, Benavides CM, Xu X, Sharma A, Pan X, Schmidt O, Brabec CJ, Andersson MR, Tedde SF, Mammo W, Wang E. ACS Macro Lett, 2018, 7: 395–400CrossRefGoogle Scholar
  28. 28.
    Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, Liu X, Zhang J, Tang W. Adv Energy Mater, 2018, 8: 1702854CrossRefGoogle Scholar
  29. 29.
    Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734–4739CrossRefGoogle Scholar
  30. 30.
    Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11: 841–849CrossRefGoogle Scholar
  31. 31.
    An Q, Zhang F, Gao W, Sun Q, Zhang M, Yang C, Zhang J. Nano Energy, 2018, 45: 177–183CrossRefGoogle Scholar
  32. 32.
    Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507CrossRefGoogle Scholar
  33. 33.
    Ma X, Gao W, Yu J, An Q, Zhang M, Hu Z, Wang J, Tang W, Yang C, Zhang F. Energy Environ Sci, 2018, 11: 2134–2141CrossRefGoogle Scholar
  34. 34.
    Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang ZG, Liu F, Zhang M, Russell TP, Li Y. Sci China Chem, 2019, 62: 845–850CrossRefGoogle Scholar
  35. 35.
    An Q, Gao W, Zhang F, Wang J, Zhang M, Wu K, Ma X, Hu Z, Jiao C, Yang C. J Mater Chem A, 2018, 6: 2468–2475CrossRefGoogle Scholar
  36. 36.
    Ma X, Luo M, Gao W, Yuan J, An Q, Zhang M, Hu Z, Gao J, Wang J, Zou Y, Yang C, Zhang F. J Mater Chem A, 2019, 7: 7843–7851CrossRefGoogle Scholar
  37. 37.
    Zhang M, Zhang F, An Q, Sun Q, Wang W, Zhang J, Tang W. Nano Energy, 2016, 22: 241–254CrossRefGoogle Scholar
  38. 38.
    Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J. ACS Energy Lett, 2018, 3: 555–561CrossRefGoogle Scholar
  39. 39.
    An Q, Wang J, Zhang F. Nano Energy, 2019, 60: 768–774CrossRefGoogle Scholar
  40. 40.
    Zhang M, Xiao Z, Gao W, Liu Q, Jin K, Wang W, Mi Y, An Q, Ma X, Liu X, Yang C, Ding L, Zhang F. Adv Energy Mater, 2018, 8: 1801968CrossRefGoogle Scholar
  41. 41.
    Lin Q, Armin A, Lyons DM, Burn PL, Meredith P. Adv Mater, 2015, 27: 2060–2064CrossRefGoogle Scholar
  42. 42.
    Miao J, Zhang F. J Mater Chem C, 2019, 7: 1741–1791CrossRefGoogle Scholar
  43. 43.
    Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y. Small, 2016, 12: 3374–3380CrossRefGoogle Scholar
  44. 44.
    Armin A, Jansen-van Vuuren RD, Kopidakis N, Burn PL, Meredith P. Nat Commun, 2015, 6: 6343CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jianli Miao
    • 1
  • Mingde Du
    • 2
  • Ying Fang
    • 2
  • Xiaoli Zhang
    • 3
  • Fujun Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of EducationBeijing Jiaotong UniversityBeijingChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina
  3. 3.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations