Science China Chemistry

, Volume 62, Issue 11, pp 1501–1503 | Cite as

Synthesis of 1,3-benzothiazines by intramolecular dehydrogenative C–S cross-coupling in a flow electrolysis cell

  • Chong Huang
  • Hai-Chao XuEmail author


Dehydrogenative cyclization of thioamides is an attractive approach for the synthesis of S-heterocycles. Reported herein is an electrochemical dehydrogenative cyclization reaction of N-benzyl thioamides in a flow electrolysis cell. The continuous-flow electrosynthesis has addressed the limitations associated with previously reported methods for the cyclization of alkylthioamides and provide a transition metal- and oxidizing reagent-free access to various functionalized 1,3-benzothiazines in good yields.


C-H functionalization electrochemistry flow chemistry heterocycles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21672178) and Fundamental Research Funds for the Central Universities.

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9554_MOESM1_ESM.pdf (5 mb)
Supporting Information


  1. 1.
    Yan H, Xu HC. Synthesis of heterocycles from thioamides. In: Murai T, Ed. Chemistry of Thioamides. Singapore: Springer, 2019Google Scholar
  2. 2.
    Hosseinian A, Ahmadi S, Nasab FAH, Mohammadi R, Vessally E. Top Curr Chem, 2018, 376: 39CrossRefGoogle Scholar
  3. 3.
    Lee CF, Liu YC, Badsara SS. Chem Asian J, 2014, 9: 706–722CrossRefGoogle Scholar
  4. 4.
    Cheng Y, Yang J, Qu Y, Li P. Org Lett, 2012, 14: 98–101CrossRefGoogle Scholar
  5. 5.
    Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. Chem Commun, 2012, 48: 76–78CrossRefGoogle Scholar
  6. 6.
    Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew Chem Int Ed, 2017, 56: 2487–2491CrossRefGoogle Scholar
  7. 7.
    Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem Rev, 2019, 119: 6769–6787CrossRefGoogle Scholar
  8. 8.
    Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319CrossRefGoogle Scholar
  9. 9.
    Moeller KD. Chem Rev, 2018, 118: 4817–4833CrossRefGoogle Scholar
  10. 10.
    Jiang Y, Xu K, Zeng C. Chem Rev, 2018, 118: 4485–4540CrossRefGoogle Scholar
  11. 11.
    Tang S, Liu Y, Lei A. Chem, 2018, 4: 27–45CrossRefGoogle Scholar
  12. 12.
    Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew Chem Int Ed, 2018, 57: 5594–5619CrossRefGoogle Scholar
  13. 13.
    Yang QL, Fang P, Mei TS. Chin J Chem, 2018, 36: 338–352CrossRefGoogle Scholar
  14. 14.
    Francke R, Little RD. Chem Soc Rev, 2014, 43: 2492CrossRefGoogle Scholar
  15. 15.
    Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal, 2018, 8: 7086–7103CrossRefGoogle Scholar
  16. 16.
    Yoshida JI, Shimizu A, Hayashi R. Chem Rev, 2018, 118: 4702–4730CrossRefGoogle Scholar
  17. 17.
    Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin J Chem, 2019, 37: 49–52CrossRefGoogle Scholar
  18. 18.
    Li D, Li S, Peng C, Lu L, Wang S, Wang P, Chen YH, Cong H, Lei A. Chem Sci, 2019, 10: 2791–2795CrossRefGoogle Scholar
  19. 19.
    He TJ, Ye Z, Ke Z, Huang JM. Nat Commun, 2019, 10: 833CrossRefGoogle Scholar
  20. 20.
    Lu F, Yang Z, Wang T, Wang T, Zhang Y, Yuan Y, Lei A. Chin J Chem, 2019, 37: 547–551CrossRefGoogle Scholar
  21. 21.
    Wang P, Tang S, Lei A. Green Chem, 2017, 19: 2092–2095CrossRefGoogle Scholar
  22. 22.
    Wang P, Tang S, Huang P, Lei A. Angew Chem Int Ed, 2017, 56: 3009–3013CrossRefGoogle Scholar
  23. 23.
    Qian XY, Li SQ, Song J, Xu HC. ACS Catal, 2017, 7: 2730–2734CrossRefGoogle Scholar
  24. 24.
    Folgueiras-Amador AA, Qian XY, Xu HC, Wirth T. Chem Eur J, 2018, 24: 487–491CrossRefGoogle Scholar
  25. 25.
    Xiong P, Xu HH, Xu HC. J Am Chem Soc, 2017, 139: 2956–2959CrossRefGoogle Scholar
  26. 26.
    Xu HH, Song J, Xu HC. ChemSusChem, 2019, 12: 3060–3063CrossRefGoogle Scholar
  27. 27.
    Cai CY, Xu HC. Nat Commun, 2018, 9: 3551CrossRefGoogle Scholar
  28. 28.
    Hou ZW, Yan H, Song JS, Xu HC. Chin J Chem, 2018, 36: 909–915CrossRefGoogle Scholar
  29. 29.
    Wu ZJ, Li SR, Xu HC. Angew Chem Int Ed, 2018, 57: 14070–14074CrossRefGoogle Scholar
  30. 30.
    Zhao HB, Xu P, Song J, Xu HC. Angew Chem Int Ed, 2018, 57: 15153–15156CrossRefGoogle Scholar
  31. 31.
    Xu F, Long H, Song J, Xu HC. Angew Chem Int Ed, 2019, 58: 9017–9021CrossRefGoogle Scholar
  32. 32.
    Huang C, Qian XY, Xu HC. Angew Chem Int Ed, 2019, 58: 6650–6653CrossRefGoogle Scholar
  33. 33.
    Wen LR, Zhou CC, Zhu MZ, Xie SG, Guo WS, Li M. Org Biomol Chem, 2019, 17: 3356–3360CrossRefGoogle Scholar
  34. 34.
    Yu H, Jiao M, Huang R, Fang X. Eur J Org Chem, 2019: 2004–2009Google Scholar
  35. 35.
    Watts K, Baker A, Wirth T. J Flow Chem, 2014, 4: 2–11CrossRefGoogle Scholar
  36. 36.
    Pletcher D, Green RA, Brown RCD. Chem Rev, 2018, 118: 4573–4591CrossRefGoogle Scholar
  37. 37.
    Atobe M, Tateno H, Matsumura Y. Chem Rev, 2018, 118: 4541–4572CrossRefGoogle Scholar
  38. 38.
    Laudadio G, de Smet W, Struik L, Cao Y, Noël T. J Flow Chem, 2018, 8: 157–165CrossRefGoogle Scholar
  39. 39.
    Lo WS, Hu WP, Lo HP, Chen CY, Kao CL, Vandavasi JK, Wang JJ. Org Lett, 2010, 12: 5570–5572CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovative Collaboration Center of Chemistry for Energy Materials, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations