Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy

  • Xiaoyu Huang
  • Rui Gu
  • Jiewei Li
  • Nan Yang
  • Zijin Cheng
  • Weili SiEmail author
  • Peng ChenEmail author
  • Wei Huang
  • Xiaochen DongEmail author


Diketopyrrolopyrrole (DPP) derivatived photosensitizers (PSs) with near infrared (NIR) absorption and good photophysical properties have drawn tremendous attention in cancer phototherapy. However, current DPP derivatives present unsatisfactory quantum yield of singlet oxygen (1O2) due to the large energy gap between the excited singlet and triplet states. To tackle this challenge, herein the DPP core is functionalized with triphenylphosphine-Au(I) group (ThDPP-Au), leading to a high 1O2 quantum yield of 0.65. Theoretical calculation attributes the enhancement to spin-orbit coupling and population of the triplet excition upon photoexcitation. The hydrophilic ThDPP-Au nanoparticals (NPs) are prepared via nano-reprecipitation, which displays homogeneous size and excellent light absorption ability (ε=4.382×104 M−1 cm−1). And the ThDPP-Au NPs exhibit low dark toxicity and high phototoxicity, which can effectively kill tumor cells via 1O2 induced mitochondrial apoptotic pathway upon irradiation. Furthermore, in vivo experiments demonstrate that ThDPP-Au NPs can selective accumulation in tumor and present excellent synergistic photodynamic/photothermal therapy guided by fluorescence and photothermal dual imaging.

diketopyrrolopyrrole-Au(I) singlet oxygen photodynamic therapy photothermal therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science of Foundation of China (61525402, 61775095, 21704043), Jiangsu Provincial Key Research and Development Plan (BE2017741), the Natural Science Foundation of Jiangsu Province (BK20170990, 17KJB150020) and the Six talent peak innovation team in Jiangsu Province (TD-SWYY-009).

Supplementary material

11426_2019_9531_MOESM1_ESM.doc (2.9 mb)
Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy


  1. 1.
    Li X, Lee D, Huang JD, Yoon J. Angew Chem Int Ed, 2018, 57: 9885–9890CrossRefGoogle Scholar
  2. 2.
    Zhou J, Li M, Hou Y, Luo Z, Chen Q, Cao H, Huo R, Xue C, Sutrisno L, Hao L, Cao Y, Ran H, Lu L, Li K, Cai K. ACS Nano, 2018, 12: 2858–2872CrossRefGoogle Scholar
  3. 3(a).
    Yao C, Wang W, Wang P, Zhao M, Li X, Zhang F. Adv Mater, 2018, 30: 1704833CrossRefGoogle Scholar
  4. 3(b).
    Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Sci China Chem, 2018, 61: 1503–1552CrossRefGoogle Scholar
  5. 4.
    Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. Adv Mater, 2018, 30: 1706090CrossRefGoogle Scholar
  6. 5.
    Yuan Y, Zhang CJ, Xu S, Liu B. Chem Sci, 2016, 7: 1862–1866CrossRefGoogle Scholar
  7. 6.
    Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F. Angew Chem Int Ed, 2011, 50: 891–895CrossRefGoogle Scholar
  8. 7(a).
    Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Nat Commun, 2018, 9: 1410CrossRefGoogle Scholar
  9. 7(b).
    Guo Z, Ma Y, Liu Y, Yan C, Shi P, Tian H, Zhu WH. Sci China Chem, 2018, 61: 1293–1300CrossRefGoogle Scholar
  10. 7(c).
    Huang G, Liu R, Hu Y, Li SH, Wu Y, Qiu Y, Li J, Yang HH. Sci China Chem, 2018, 61: 806–811CrossRefGoogle Scholar
  11. 8.
    Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K. ACS Nano, 2016, 10: 4472–4481CrossRefGoogle Scholar
  12. 9(a).
    Wu H, Zeng F, Zhang H, Xu J, Qiu J, Wu S. Adv Sci, 2016, 3: 1500254CrossRefGoogle Scholar
  13. 9(b).
    Li M, Luo Z, Zhao Y. Sci China Chem, 2018, 61: 1214–1226CrossRefGoogle Scholar
  14. 10.
    Cai X, Liu X, Liao LD, Bandla A, Ling JM, Liu YH, Thakor N, Bazan GC, Liu B. Small, 2016, 12: 4873–4880CrossRefGoogle Scholar
  15. 11.
    Song X, Chen Q, Liu Z. Nano Res, 2014, 8: 340–354CrossRefGoogle Scholar
  16. 12.
    Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K. Chem Soc Rev, 2013, 42: 77–88CrossRefGoogle Scholar
  17. 13.
    Zhao J, Wu W, Sun J, Guo S. Chem Soc Rev, 2013, 42: 5323–5351CrossRefGoogle Scholar
  18. 14.
    Chiba M, Ichikawa Y, Kamiya M, Komatsu T, Ueno T, Hanaoka K, Nagano T, Lange N, Urano Y. Angew Chem Int Ed, 2017, 56: 10418–10422CrossRefGoogle Scholar
  19. 15.
    Thomas AP, Palanikumar L, Jeena MT, Kim K, Ryu JH. Chem Sci, 2017, 8: 8351–8356CrossRefGoogle Scholar
  20. 16.
    Li W, Wang L, Tang H, Cao D. Dyes Pigments, 2019, 162: 934–950CrossRefGoogle Scholar
  21. 17.
    Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS, Bao Z, Rao J. Adv Mater, 2015, 27: 5184–5190CrossRefGoogle Scholar
  22. 18.
    Cai Y, Liang P, Tang Q, Yang X, Si W, Huang W, Zhang Q, Dong X. ACS Nano, 2017, 11: 1054–1063CrossRefGoogle Scholar
  23. 19.
    Lan M, Zhang J, Zhu X, Wang P, Chen X, Lee CS, Zhang W. Nano Res, 2015, 8: 2380–2389CrossRefGoogle Scholar
  24. 20.
    Cao Y, Wu Y, Wang G, Yi J, Yu C, Huang Y, Sun L, Bao Y, Li Y. J Mater Chem B, 2017, 5: 5479–5487CrossRefGoogle Scholar
  25. 21.
    Mauck CM, Hartnett PE, Margulies EA, Ma L, Miller CE, Schatz GC, Marks TJ, Wasielewski MR. J Am Chem Soc, 2016, 138: 11749–11761CrossRefGoogle Scholar
  26. 22.
    Karsten BP, Bouwer RKM, Hummelen JC, Williams RM, Janssen RAJ. Photochem Photobiol Sci, 2010, 9: 1055–1065CrossRefGoogle Scholar
  27. 23.
    Gan S, Hu S, Li XL, Zeng J, Zhang D, Huang T, Luo W, Zhao Z, Duan L, Su SJ, Tang BZ. ACS Appl Mater Interfaces, 2018, 10: 17327–17334CrossRefGoogle Scholar
  28. 24.
    Einzinger M, Zhu T, de Silva P, Belger C, Swager TM, Van Voorhis T, Baldo MA. Adv Mater, 2017, 29: 1701987CrossRefGoogle Scholar
  29. 25.
    Čížková M, Cattiaux L, Mallet JM, Labbé E, Buriez O. Electrochim Acta, 2018, 260: 589–597CrossRefGoogle Scholar
  30. 26.
    Zou J, Yin Z, Ding K, Tang Q, Li J, Si W, Shao J, Zhang Q, Huang W, Dong X. ACS Appl Mater Interfaces, 2017, 9: 32475–32481CrossRefGoogle Scholar
  31. 27.
    Erbas S, Gorgulu A, Kocakusakogullari M, Akkaya EU. Chem Commun, 2009, 57: 4956CrossRefGoogle Scholar
  32. 28.
    Batat P, Cantuel M, Jonusauskas G, Scarpantonio L, Palma A, O’Shea DF, McClenaghan ND. J Phys Chem A, 2011, 115: 14034–14039CrossRefGoogle Scholar
  33. 29.
    Xiao W, Wang P, Ou C, Huang X, Tang Y, Wu M, Si W, Shao J, Huang W, Dong X. Biomaterials, 2018, 183: 1–9CrossRefGoogle Scholar
  34. 30.
    Xu Y, Zhao M, Zou L, Wu L, Xie M, Yang T, Liu S, Huang W, Zhao Q. ACS Appl Mater Interfaces, 2018, 10: 44324–44335CrossRefGoogle Scholar
  35. 31.
    Chen D, Tang Q, Zou J, Yang X, Huang W, Zhang Q, Shao J, Dong X. Adv Healthc Mater, 2018, 7: 1701272CrossRefGoogle Scholar
  36. 32.
    Sun J, Zhong F, Yi X, Zhao J. Inorg Chem, 2013, 52: 6299–6310CrossRefGoogle Scholar
  37. 33.
    McKenzie LK, Bryant HE, Weinstein JA. Coordin Chem Rev, 2019, 379: 2–29CrossRefGoogle Scholar
  38. 34.
    Yang D, Gulzar A, Yang G, Gai S, He F, Dai Y, Zhong C, Yang P. Small, 2017, 13: 1703007CrossRefGoogle Scholar
  39. 35.
    Yu J, Hsu CH, Huang CC, Chang PY. ACS Appl Mater Interfaces, 2015, 7: 432–441CrossRefGoogle Scholar
  40. 36.
    Wang Y, Huang X, Tang Y, Zou J, Wang P, Zhang Y, Si W, Huang W, Dong X. Chem Sci, 2018, 9: 8103–8109CrossRefGoogle Scholar
  41. 37.
    Liang P, Huang X, Wang Y, Chen D, Ou C, Zhang Q, Shao J, Huang W, Dong X. ACS Nano, 2018, 12: 11446–11457CrossRefGoogle Scholar
  42. 38.
    Vankayala R, Lin CC, Kalluru P, Chiang CS, Hwang KC. Biomaterials, 2014, 35: 5527–5538CrossRefGoogle Scholar
  43. 39.
    Tang Q, Xiao W, Li J, Chen D, Zhang Y, Shao J, Dong X. J Mater Chem B, 2018, 6: 2778–2784CrossRefGoogle Scholar
  44. 40.
    Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z. Adv Mater, 2016, 28: 7129–7136CrossRefGoogle Scholar
  45. 41.
    Liu G, Zhang S, Shi Y, Huang X, Tang Y, Chen P, Si W, Huang W, Dong X. Adv Funct Mater, 2018, 28: 1804317CrossRefGoogle Scholar
  46. 42.
    Zhao F, Li X, Li J, Dou Y, Wang L, Wu M, Liu Y, Chang J, Zhang X. JMater Chem B, 2017, 5: 2145–2151CrossRefGoogle Scholar
  47. 43.
    Thompson CC, Ashcroft FJ, Patel S, Saraga G, Vimalachandran D, Prime W, Campbell F, Dodson A, Jenkins RE, Lemoine NR, Crnogorac-Jurcevic T, Yin HL, Costello E. Gut, 2007, 56: 95–106CrossRefGoogle Scholar
  48. 44.
    Sun Y, Jiang X, Lu Y, Zhu J, Yu L, Ma B, Zhang Q. Chemico-Biol Interact, 2018, 296: 57–64CrossRefGoogle Scholar
  49. 45.
    Zhu J, Sun Y, Lu Y, Jiang X, Ma B, Yu L, Zhang J, Dong X, Zhang Q. Cell Death Dis, 2018, 9: 708CrossRefGoogle Scholar
  50. 46.
    Wang FY, Tang XM, Wang X, Huang KB, Feng HW, Chen ZF, Liu YN, Liang H. Eur J Med Chem, 2018, 155: 639–650CrossRefGoogle Scholar
  51. 47.
    Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X. ACS Nano, 2017, 11: 4651–4659CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingChina
  2. 2.School of Chemical and Biomedical EngineeringNanyang Technological UniversityNanyangSingapore
  3. 3.School of Chemistry and Materials ScienceNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi’anChina

Personalised recommendations