Advertisement

Regioselective introduction of vinyl trifluoromethylthioether to remote unactivated C(sp3)—H bonds via radical translocation cascade

  • Shuo Wu
  • Xinxin Wu
  • Zhen Wu
  • Chen ZhuEmail author
Articles SPECIAL ISSUE: Organic Free Radical Chemistry
  • 27 Downloads

Abstract

Described herein is an efficient protocol for the regioselective introduction of a vinyl trifluoromethylthioether to remote unactivated C(sp3)—H bonds. The cascade process involves the vinyl radical-mediated 1,5-hydrogen atom transfer (HAT) and remote vinyl migration. During the transformation, inert C—H and C—C bonds are consecutively cleaved under mild conditions. The reaction features good functional group tolerance, broad substrate scope, and high regio-/stereo-selectivity.

C—H functionalization hydrogen atom transfer vinyl migration vinyl radical trifluoromethylthio radical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Soochow University, the National Natural Science Foundation of China (21722205), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

11426_2019_9527_MOESM1_ESM.pdf (12.5 mb)
Regioselective introduction of vinyl trifluoromethylthioether to remote unactivated C(sp3)—H bonds via radical translocation cascade

References

  1. 1(a).
    Leo A, Hansch C, Elkins D. Chem Rev, 1971, 71: 525–616CrossRefGoogle Scholar
  2. 1(b).
    Filler R. Biomedical Aspests of Fluorine Chemsitry. Tokyo: Kodansha, 1982Google Scholar
  3. 1(c).
    Becker A. Inventory of Industrial Fluoro-Biochemicals. Paris: Eyrolles, 1996Google Scholar
  4. 1(d).
    Leroux F, Jeschke P, Schlosser M. Chem Rev, 2005, 105: 827–856CrossRefGoogle Scholar
  5. 1(e).
    Manteau B, Pazenok S, Vors JP, Leroux FR. J Fluorine Chem, 2010, 131: 140–158CrossRefGoogle Scholar
  6. 2(a).
    Filler R, Kobayashi Y, Yagupolskii LM. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Elsevier: New York, 1993Google Scholar
  7. 2(b).
    Mueller K. ChemBioChem, 2004, 5: 559–562CrossRefGoogle Scholar
  8. 2(c).
    Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886CrossRefGoogle Scholar
  9. 2(d).
    Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330CrossRefGoogle Scholar
  10. 2(e).
    Hagmann WK. J Med Chem, 2008, 51: 4359–4369CrossRefGoogle Scholar
  11. 2(f).
    Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem Soc Rev, 2012, 41: 31–42CrossRefGoogle Scholar
  12. 2(g).
    Yan H, Zhu C. Sci China Chem, 2017, 60: 214–222CrossRefGoogle Scholar
  13. 3.
    Riesco-Domínguez A, van de Wiel J, Hamlin TA, van Beek B, Lindell SD, Blanco-Ania D, Bickelhaupt FM, Rutjes FPJT. J Org Chem, 2018, 83: 1779–1789CrossRefGoogle Scholar
  14. 4(a).
    For selected examples on the synthesis of vinyl trifluoromethylthioethers: Pan S, Li H, Huang Y, Xu XH, Qing FL. Org Lett, 2017, 19: 3247–3250CrossRefGoogle Scholar
  15. 4(b).
    Li H, Liu S, Huang Y, Xu XH, Qing FL. Chem Commun, 2017, 53: 10136–10139CrossRefGoogle Scholar
  16. 4(c).
    Wu W, Dai W, Ji X, Cao S. Org Lett, 2016, 18: 2918–2921CrossRefGoogle Scholar
  17. 5(a).
    For selected examples mediated by N-radicals: Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature, 2016, 539: 268–271CrossRefGoogle Scholar
  18. 5(b).
    Chu JCK, Rovis T. Nature, 2016, 539: 272–275CrossRefGoogle Scholar
  19. 5(c).
    Yuan W, Zhou Z, Gong L, Meggers E. Chem Commun, 2017, 53: 8964–8967CrossRefGoogle Scholar
  20. 5(d).
    Xia Y, Wang L, Studer A. Angew Chem Int Ed, 2018, 57: 12940–12944CrossRefGoogle Scholar
  21. 5(e).
    Jiang H, Studer A. Angew Chem Int Ed, 2018, 57: 1692–1696CrossRefGoogle Scholar
  22. 5(f).
    Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew Chem Int Ed, 2018, 57: 744–748CrossRefGoogle Scholar
  23. 5(g).
    Shu W, Nevado C. Angew Chem Int Ed, 2017, 56: 1881–1884CrossRefGoogle Scholar
  24. 5(h).
    Li Z, Wang Q, Zhu J. Angew Chem Int Ed, 2018, 57: 13288–13292CrossRefGoogle Scholar
  25. 5(i).
    Shen X, Zhao JJ, Yu S. Org Lett, 2018, 20: 5523–5527CrossRefGoogle Scholar
  26. 5(j).
    Chen H, Guo L, Yu S. Org Lett, 2018, 20: 6255–6259CrossRefGoogle Scholar
  27. 5(k).
    Tang N, Wu X, Zhu C. Chem Sci, 2019, 10: 6915–6919CrossRefGoogle Scholar
  28. 6(a).
    For selected examples mediated by O-radicals: Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew Chem Int Ed, 2018, 57: 1640–1644CrossRefGoogle Scholar
  29. 6(b).
    Hu A, Guo JJ, Pan H, Tang H, Gao Z, Zuo Z. J Am Chem Soc, 2018, 140: 1612–1616CrossRefGoogle Scholar
  30. 6(c).
    Wu X, Zhang H, Tang N, Wu Z, Wang D, Ji M, Xu Y, Wang M, Zhu C. Nat Commun, 2018, 9: 3343CrossRefGoogle Scholar
  31. 6(d).
    Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew Chem Int Ed, 2016, 55: 1872–1875CrossRefGoogle Scholar
  32. 6(e).
    Wang C, Harms K, Meggers E. Angew Chem Int Ed, 2016, 55: 13495–13498CrossRefGoogle Scholar
  33. 6(f).
    Zhu Y, Huang K, Pan J, Qiu X, Luo X, Qin Q, Wei J, Wen X, Zhang L, Jiao N. Nat Commun, 2018, 9: 2625CrossRefGoogle Scholar
  34. 6(g).
    Guan H, Sun S, Mao Y, Chen L, Lu R, Huang J, Liu L. Angew Chem Int Ed, 2018, 57: 11413–11417CrossRefGoogle Scholar
  35. 6(h).
    Wang M, Huan L, Zhu C. Org Lett, 2019, 21: 821–825CrossRefGoogle Scholar
  36. 7(a).
    For selected examples: Curran DP, Shen W. J Am Chem Soc, 1993, 115: 6051–6059CrossRefGoogle Scholar
  37. 7(b).
    Hu M, Fan JH, Liu Y, Ouyang XH, Song RJ, Li JH. Angew Chem Int Ed, 2015, 54: 9577–9580CrossRefGoogle Scholar
  38. 7(c).
    Zhu YL, Jiang B, Hao WJ, Qiu JK, Sun J, Wang DC, Wei P, Wang AF, Li G, Tu SJ. Org Lett, 2015, 17: 6078–6081CrossRefGoogle Scholar
  39. 7(d).
    Gloor CS, Dénès F, Renaud P. Angew Chem Int Ed, 2017, 56: 13329–13332CrossRefGoogle Scholar
  40. 7(e).
    Soulard V, Dénès F, Renaud P. Free Radical Res, 2016, 50: S2–S5CrossRefGoogle Scholar
  41. 8(a).
    For reviews on radical-mediated functional group migration (FGM), see: Wu X, Wu S, Zhu C. Tetrahedron Lett, 2018, 59: 1328–1336CrossRefGoogle Scholar
  42. 8(b).
    Wu X, Zhu C. Chin J Chem, 2019, 37: 171–182Google Scholar
  43. 8(c).
    Li W, Xu W, Xie J, Yu S, Zhu C. Chem Soc Rev, 2018, 47: 654–667CrossRefGoogle Scholar
  44. 8(d).
    For selected examples on FGM from our group: Wu Z, Ren R, Zhu C. Angew Chem Int Ed, 2016, 55: 10821–10824CrossRefGoogle Scholar
  45. 8(e).
    Ren R, Wu Z, Huan L, Zhu C. Adv Synth Catal, 2017, 359: 3052–3056CrossRefGoogle Scholar
  46. 8(f).
    Wu Z, Wang D, Liu Y, Huan L, Zhu C. J Am Chem Soc, 2017, 139: 1388–1391CrossRefGoogle Scholar
  47. 8(g).
    Xu Y, Wu Z, Jiang J, Ke Z, Zhu C. Angew Chem Int Ed, 2017, 56: 4545–4548CrossRefGoogle Scholar
  48. 8(h).
    Wang M, Wu Z, Zhang B, Zhu C. Org Chem Front, 2018, 5: 1896–1899CrossRefGoogle Scholar
  49. 8(i).
    Zhang H, Wu X, Zhao Q, Zhu C. Chem Asian J, 2018, 13: 2453–2457CrossRefGoogle Scholar
  50. 8(j).
    Yu J, Wang D, Xu Y, Wu Z, Zhu C. Adv Synth Catal, 2018, 360: 744–750CrossRefGoogle Scholar
  51. 8(k).
    Ji M, Yu J, Zhu C. Chem Commun, 2018, 54: 6812–6815CrossRefGoogle Scholar
  52. 8(l).
    Ji M, Wu Z, Yu J, Wan X, Zhu C. Adv Synth Catal, 2017, 359: 1959–1962CrossRefGoogle Scholar
  53. 8(m).
    Chen D, Wu Z, Yao Y, Zhu C. Org Chem Front, 2018, 5: 2370–2374CrossRefGoogle Scholar
  54. 8(n).
    Chen D, Ji M, Yao Y, Zhu C. Acta Chim Sin, 2018, 76: 951–955CrossRefGoogle Scholar
  55. 8(o).
    Ji M, Wu Z, Zhu C. Chem Commun, 2019, 55: 2368–2371CrossRefGoogle Scholar
  56. 9(a).
    Wu S, Wu X, Wang D, Zhu C. Angew Chem Int Ed, 2019, 58: 1499–1503CrossRefGoogle Scholar
  57. 9(b).
    Yang S, Wu X, Wu S, Zhu C. Org Lett, 2019, 21: 4837–4841CrossRefGoogle Scholar
  58. 9(c).
    Friese FW, Mück-Lichtenfeld C, Studer A. Nat Commun, 2018, 9: 2808CrossRefGoogle Scholar
  59. 10(a).
    Tang X, Studer A. Angew Chem Int Ed, 2018, 57: 814–817CrossRefGoogle Scholar
  60. 10(b).
    Li L, Li ZL, Gu QS, Wang N, Liu XY. Sci Adv, 2017, 3: e1701487CrossRefGoogle Scholar
  61. 11(a).
    For selected reviews, see: Xue XS, Ji P, Zhou B, Cheng JP. Chem Rev, 2017, 117: 8622–8648CrossRefGoogle Scholar
  62. 11(b).
    Blanksby SJ, Ellison GB. Acc Chem Res, 2003, 36: 255–263CrossRefGoogle Scholar
  63. 12(a).
    Simpkins NS. Tetrahedron, 1990, 46: 6951–6984CrossRefGoogle Scholar
  64. 12(b).
    Meadows DC, Gervay-Hague J. Med Res Rev, 2006, 26: 793–814CrossRefGoogle Scholar
  65. 12(c).
    Forristal I. J Sulfur Chem, 2005, 26: 163–185CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversityJiangsuChina
  2. 2.Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic ChemistryShanghaiChina

Personalised recommendations