Advertisement

Application of electrochemistry to single-molecule junctions: from construction to modulation

  • Gan Wang
  • Biao-Feng Zeng
  • Shi-Qiang Zhao
  • Qiao-Zan Qian
  • Wenjing Hong
  • Yang YangEmail author
Reviews
  • 12 Downloads

Abstract

State-of-the-art molecular electronics focus on the measurement of electrical properties of materials at the single-molecule level. Experimentally, molecular electronics face two primary challenges. One challenge is the reliable construction of single-molecule junctions, and the second challenge is the arbitrary modulation of electron transport through these junctions. Over the past decades, electrochemistry has been widely adopted to meet these challenges, leading to a wealth of novel findings. This review starts from the application of electrochemical methods to the fabrication of nanogaps, which is an essential platform for the construction of single-molecule junctions. The utilization of electrochemistry for the modification of molecular junctions, including terminal groups and structural backbones, is introduced, and finally, recent progress in the electrochemical modulation of single-molecule electron transport is reviewed.

single-molecule electronics molecular junction electrochemical deposition electrochemical gating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities in China (Xiamen University: 20720170035), the National Natural Science Foundation of China (21503179, 61573295, 21722305), and the Nation Key R&D Program of China (2017YFA0204902). The authors thank Dr. Shu Hu and Dr. Chao Zhan for fruitful discussions.

References

  1. 1.
    Ratner M. Nat Nanotech, 2013, 8: 378–381CrossRefGoogle Scholar
  2. 2.
    Lörtscher E. Nat Nanotech, 2013, 8: 381–384CrossRefGoogle Scholar
  3. 3.
    Elke S, Carlos CJ. Molecular Electronics: An Introduction to Theory and Experiment. Vol. 15. Singapore: World Scientific, 2017Google Scholar
  4. 4.
    Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C. Nat Chem, 2015, 7: 215–220CrossRefGoogle Scholar
  5. 5.
    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu DH, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X. Science, 2016, 352: 1443–1445CrossRefGoogle Scholar
  6. 6.
    Capozzi B, Xia J, Adak O, Dell EJ, Liu ZF, Taylor JC, Neaton JB, Campos LM, Venkataraman L. Nat Nanotech, 2015, 10: 522–527CrossRefGoogle Scholar
  7. 7.
    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B. Nat Chem, 2016, 8: 484–490CrossRefGoogle Scholar
  8. 8.
    Li Z, Smeu M, Afsari S, Xing Y, Ratner MA, Borguet E. Angew Chem Int Ed, 2014, 53: 1098–1102CrossRefGoogle Scholar
  9. 9.
    Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald ML, Wu X, Liu Z, Guo X. Angew Chem Int Ed, 2012, 51: 12228–12232CrossRefGoogle Scholar
  10. 10.
    Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T. Nature, 2009, 462: 1039–1043CrossRefGoogle Scholar
  11. 11.
    Perrin ML, Verzijl CJO, Martin CA, Shaikh AJ, Eelkema R, van Esch JH, van Ruitenbeek JM, Thijssen JM, van der Zant HSJ, Dulic D. Nat Nanotech, 2013, 8: 282–287CrossRefGoogle Scholar
  12. 12.
    Aviram A, Ratner MA. Chem Phys Lett, 1974, 29: 277–283CrossRefGoogle Scholar
  13. 13.
    Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318–4440CrossRefGoogle Scholar
  14. 14.
    Huang C, Rudnev AV, Hong W, Wandlowski T. Chem Soc Rev, 2015, 44: 889–901CrossRefGoogle Scholar
  15. 15.
    Xu B, Tao NJ. Science, 2003, 301: 1221–1223CrossRefGoogle Scholar
  16. 16.
    Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML. Nature, 2006, 442: 904–907CrossRefGoogle Scholar
  17. 17.
    Xiang D, Jeong H, Lee T, Mayer D. Adv Mater, 2013, 25: 4845–4867CrossRefGoogle Scholar
  18. 18.
    Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM. Nature, 2002, 419: 906–909CrossRefGoogle Scholar
  19. 19.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Science, 1997, 278: 252–254CrossRefGoogle Scholar
  20. 20.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM. Science, 2001, 294: 571–574CrossRefGoogle Scholar
  21. 21.
    Ho Choi S, Kim B, Frisbie CD. Science, 2008, 320: 1482–1486CrossRefGoogle Scholar
  22. 22.
    Qin L, Park S, Huang L, Mirkin CA. Science, 2005, 309: 113–115CrossRefGoogle Scholar
  23. 23.
    Banholzer MJ, Qin L, Millstone JE, Osberg KD, Mirkin CA. Nat Protoc, 2009, 4: 838–848CrossRefGoogle Scholar
  24. 24.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature, 2002, 417: 722–725CrossRefGoogle Scholar
  25. 25.
    Liang W, Shores MP, Bockrath M, Long JR, Park H. Nature, 2002, 417: 725–729CrossRefGoogle Scholar
  26. 26.
    Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, O’brien S, Yan J, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C. Science, 2006, 311: 356–359CrossRefGoogle Scholar
  27. 27.
    Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W. Science, 2014, 344: 1135–1138CrossRefGoogle Scholar
  28. 28.
    Natterer FD, Yang K, Paul W, Willke P, Choi T, Greber T, Heinrich AJ, Lutz CP. Nature, 2017, 543: 226–228CrossRefGoogle Scholar
  29. 29.
    Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 531: 88–91CrossRefGoogle Scholar
  30. 30.
    Ciampi S, Darwish N, Aitken HM, Díez-Pérez I, Coote ML. Chem Soc Rev, 2018, 47: 5146–5164CrossRefGoogle Scholar
  31. 31.
    Huang C, Jevric M, Borges A, Olsen ST, Hamill JM, Zheng JT, Yang Y, Rudnev A, Baghernejad M, Broekmann P, Petersen AU, Wandlowski T, Mikkelsen KV, Solomon GC, Brandsted Nielsen M, Hong W. Nat Commun, 2017, 8: 15436CrossRefGoogle Scholar
  32. 32.
    Chen L, Feng A, Wang M, Liu J, Hong W, Guo X, Xiang D. Sci China Chem, 2018, 61: 1368–1384CrossRefGoogle Scholar
  33. 33.
    Reddy P, Jang SY, Segalman RA, Majumdar A. Science, 2007, 315: 1568–1571CrossRefGoogle Scholar
  34. 34.
    Cui L, Miao R, Wang K, Thompson D, Zotti LA, Cuevas JC, Meyhofer E, Reddy P. Nat Nanotech, 2018, 13: 122–127CrossRefGoogle Scholar
  35. 35.
    Zhou XS, Wei YM, Liu L, Chen ZB, Tang J, Mao BW. J Am Chem Soc, 2008, 130: 13228–13230CrossRefGoogle Scholar
  36. 36.
    Li XL, Hua SZ, Chopra HD, Tao NJ. Micro Nano Lett, 2006, 1: 83–88CrossRefGoogle Scholar
  37. 37.
    Li CZ, Tao NJ. Appl Phys Lett, 1998, 72: 894–896CrossRefGoogle Scholar
  38. 38.
    Nedelcu M, Saifullah MSM, Hasko DG, Jang A, Anderson D, Huck WTS, Jones GAC, Welland ME, Kang DJ, Steiner U. Adv Funct Mater, 2010, 20: 2317–2323CrossRefGoogle Scholar
  39. 39.
    Haedler AT, Kreger K, Issac A, Wittmann B, Kivala M, Hammer N, Köhler J, Schmidt HW, Hildner R. Nature, 2015, 523: 196–199CrossRefGoogle Scholar
  40. 40.
    Muller C, van Ruitenbeek JMJ, de Jongh LJL. Phys Rev Lett, 1992, 69: 140–143CrossRefGoogle Scholar
  41. 41.
    Li CZ, He HX, Tao NJ. Appl Phys Lett, 2000, 77: 3995–3997CrossRefGoogle Scholar
  42. 42.
    Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ. Appl Phys Lett, 2000, 76: 1333–1335CrossRefGoogle Scholar
  43. 43.
    He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tsui R. J Am Chem Soc, 2001, 123: 7730–7731CrossRefGoogle Scholar
  44. 44.
    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D. Nano Lett, 2013, 13: 2809–2813CrossRefGoogle Scholar
  45. 45.
    Puebla-Hellmann G, Venkatesan K, Mayor M, Lörtscher E. Nature, 2018, 559: 232–235CrossRefGoogle Scholar
  46. 46.
    Kiguchi M, Konishi T, Murakoshi K. Appl Phys Lett, 2005, 87: 043104CrossRefGoogle Scholar
  47. 47.
    Wang YH, Zhou XY, Sun YY, Han D, Zheng JF, Niu ZJ, Zhou XS. Electrochim Acta, 2014, 123: 205–210CrossRefGoogle Scholar
  48. 48.
    Kiguchi M, Konishi T, Miura S, Murakoshi K. Nanotechnology, 2007, 18: 424011CrossRefGoogle Scholar
  49. 49.
    Kiguchi M, Murakoshi K. Appl Phys Lett, 2006, 88: 253112CrossRefGoogle Scholar
  50. 50.
    Konishi T, Kiguchi M, Murakoshi K. Phys Rev B, 2010, 81: 125422CrossRefGoogle Scholar
  51. 51.
    Konishi T, Kiguchi M, Murakoshi K. Surf Sci, 2008, 602: 2333–2336CrossRefGoogle Scholar
  52. 52.
    Zhou XS, Liang JH, Chen ZB, Mao BW. Electrochem Commun, 2011, 13: 407–410CrossRefGoogle Scholar
  53. 53.
    Lörtscher E, Ciszek JW, Tour J, Riel H. Small, 2006, 2: 973–977CrossRefGoogle Scholar
  54. 54.
    Yang Y, Tian JH, Luo ZZ, Wu ST, Tian ZQ. J Mater Eng, 2008, 36: 278–286Google Scholar
  55. 55.
    Tian JH, Yang Y, Liu B, Schöllhorn B, Wu DY, Maisonhaute E, Muns AS, Chen Y, Amatore C, Tao NJ, Tian ZQ. Nanotechnology, 2010, 21: 274012CrossRefGoogle Scholar
  56. 56.
    Yang Y, Liu JY, Chen ZB, Tian JH, Jin X, Liu B, Li X, Luo ZZ, Lu M, Yang FZ, Tao N, Tian ZQ. Nanotechnology, 2011, 22: 275313CrossRefGoogle Scholar
  57. 57.
    Yang Y, Chen Z, Liu J, Lu M, Yang D, Yang F, Tian Z. Nano Res, 2011, 4: 1199–1207CrossRefGoogle Scholar
  58. 58.
    Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ. Chem Sci, 2013, 4: 2471–2477CrossRefGoogle Scholar
  59. 59.
    Yang Y, Liu J, Feng S, Wen H, Tian J, Zheng J, Schöllhorn B, Amatore C, Chen Z, Tian Z. Nano Res, 2016, 9: 560–570CrossRefGoogle Scholar
  60. 60.
    Kolb D, Ullmann R, Will T. Science, 1997, 275: 1097–1099CrossRefGoogle Scholar
  61. 61.
    Zheng JT, Yan RW, Tian JH, Liu JY, Pei LQ, Wu DY, Dai K, Yang Y, Jin S, Hong W, Tian ZQ. Electrochim Acta, 2016, 200: 268–275CrossRefGoogle Scholar
  62. 62.
    Chen F, Li X, Hihath J, Huang Z, Tao N. J Am Chem Soc, 2006, 128: 15874–15881CrossRefGoogle Scholar
  63. 63.
    Hong W, Manrique DZ, Moreno-García P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T. J Am Chem Soc, 2012, 134: 2292–2304CrossRefGoogle Scholar
  64. 64.
    Leary E, La Rosa A, González MT, Rubio-Bollinger G, Agraït N, Martin N. Chem Soc Rev, 2015, 44: 920–942CrossRefGoogle Scholar
  65. 65.
    Huang Z, Chen F, Bennett PA, Tao N. J Am Chem Soc, 2007, 129: 13225–13231CrossRefGoogle Scholar
  66. 66.
    Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML. Nano Lett, 2006, 6: 458–462CrossRefGoogle Scholar
  67. 67.
    Xu B, Xiao X, Tao NJ. J Am Chem Soc, 2003, 125: 16164–16165CrossRefGoogle Scholar
  68. 68.
    Zhang YP, Chen LC, Zhang ZQ, Cao JJ, Tang C, Liu J, Duan LL, Huo Y, Shao X, Hong W, Zhang HL. J Am Chem Soc, 2018, 140: 6531–6535CrossRefGoogle Scholar
  69. 69.
    Cheng ZL, Skouta R, Vazquez H, Widawsky JR, Schneebeli S, Chen W, Hybertsen MS, Breslow R, Venkataraman L. Nat Nanotech, 2011, 6: 353–357CrossRefGoogle Scholar
  70. 70.
    Chen W, Widawsky JR, Vázquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L. J Am Chem Soc, 2011, 133: 17160–17163CrossRefGoogle Scholar
  71. 71.
    Hong W, Li H, Liu SX, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T. J Am Chem Soc, 2012, 134: 19425–19431CrossRefGoogle Scholar
  72. 72.
    Huang C, Chen S, Baruël Ørnsø K, Reber D, Baghernejad M, Fu Y, Wandlowski T, Decurtins S, Hong W, Thygesen KS, Liu SX. Angew Chem Int Ed, 2015, 54: 14304–14307CrossRefGoogle Scholar
  73. 73.
    Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N. J Am Chem Soc, 2013, 135: 3319–3322CrossRefGoogle Scholar
  74. 74.
    Zang Y, Pinkard A, Liu ZF, Neaton JB, Steigerwald ML, Roy X, Venkataraman L. J Am Chem Soc, 2017, 139: 14845–14848CrossRefGoogle Scholar
  75. 75.
    Doud EA, Inkpen MS, Lovat G, Montes E, Paley DW, Steigerwald ML, Vázquez H, Venkataraman L, Roy X. J Am Chem Soc, 2018, 140: 8944–8949CrossRefGoogle Scholar
  76. 76.
    Haiss W, van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ. J Am Chem Soc, 2003, 125: 15294–15295CrossRefGoogle Scholar
  77. 77.
    Nichols RJ, Higgins SJ. Acc Chem Res, 2016, 49: 2640–2648CrossRefGoogle Scholar
  78. 78.
    Haiss W, Albrecht T, van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ, Kuznetsov AM, Zhang J, Chi Q, Ulstrup J. J Phys Chem B, 2007, 111: 6703–6712CrossRefGoogle Scholar
  79. 79.
    Xiao X, Brune D, He J, Lindsay S, Gorman CB, Tao N. Chem Phys, 2006, 326: 138–143CrossRefGoogle Scholar
  80. 80.
    Zhou XS, Liu L, Fortgang P, Lefevre AS, Serra-Muns A, Raouafi N, Amatore C, Mao BW, Maisonhaute E, Schollhorn B. J Am Chem Soc, 2011, 133: 7509–7516CrossRefGoogle Scholar
  81. 81.
    Albrecht T, Guckian A, Kuznetsov AM, Vos JG, Ulstrup J. J Am Chem Soc, 2006, 128: 17132–17138CrossRefGoogle Scholar
  82. 82.
    Ricci AM, Calvo EJ, Martin S, Nichols RJ. J Am Chem Soc, 2010, 132: 2494–2495CrossRefGoogle Scholar
  83. 83.
    Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ, Nygaard S, Jeppesen JO, Ulstrup J. J Am Chem Soc, 2008, 130: 12204–12205CrossRefGoogle Scholar
  84. 84.
    Liao J, Agustsson JS, Wu S, Schonenberger C, Calame M, Leroux Y, Mayor M, Jeannin O, Ran YF, Liu SX, Decurtins S. Nano Lett, 2010, 10: 759–764CrossRefGoogle Scholar
  85. 85.
    Baghernejad M, Zhao X, Baruël Ørnsø K, Füeg M, Moreno-García P, Rudnev AV, Kaliginedi V, Vesztergom S, Huang C, Hong W, Broekmann P, Wandlowski T, Thygesen KS, Bryce MR. J Am Chem Soc, 2014, 136: 17922–17925CrossRefGoogle Scholar
  86. 86.
    Pia EAD, Chi Q, Jones DD, Macdonald JE, Ulstrup J, Elliott M. Nano Lett, 2011, 11: 176–182CrossRefGoogle Scholar
  87. 87.
    Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ. J Am Chem Soc, 2012, 134: 16817–16826CrossRefGoogle Scholar
  88. 88.
    Paquette MM, Plaul D, Kurimoto A, Patrick BO, Frank NL. J Am Chem Soc, 2018, 140: 14990–15000CrossRefGoogle Scholar
  89. 89.
    Li J, Zhao Z, Yu C, Wang H, Zhao J. J Comput Chem, 2012, 33: 666–672CrossRefGoogle Scholar
  90. 90.
    Darwish N, Díez-Pérez I, Da Silva P, Tao N, Gooding JJ, Paddon-Row MN. Angew Chem Int Ed, 2012, 51: 3203–3206CrossRefGoogle Scholar
  91. 91.
    Xiang L, Palma JL, Li Y, Mujica V, Ratner MA, Tao N. Nat Commun, 2017, 8: 14471CrossRefGoogle Scholar
  92. 92.
    Li Y, Wang H, Wang Z, Qiao Y, Ulstrup J, Chen HY, Zhou G, Tao N. Proc Natl Acad Sci USA, 2019, 116: 3407–3412CrossRefGoogle Scholar
  93. 93.
    Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J. Chem Rev, 2008, 108: 2737–2791CrossRefGoogle Scholar
  94. 94.
    Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L. Nano Lett, 2014, 14: 1400–1404CrossRefGoogle Scholar
  95. 95.
    Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler DR, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N. Nat Mater, 2019, 18: 357–363CrossRefGoogle Scholar
  96. 96.
    Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W. Nat Mater, 2019, 18: 364–369CrossRefGoogle Scholar
  97. 97.
    Huang B, Liu X, Yuan Y, Hong ZW, Zheng JF, Pei LQ, Shao Y, Li JF, Zhou XS, Chen JZ, Jin S, Mao BW. J Am Chem Soc, 2018, 140: 17685–17690CrossRefGoogle Scholar
  98. 98.
    Zhao Z, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C, Ni L, Chen X, Wang M, Li Z, Lee T, Xiang D. Small, 2018, 14: 1703815CrossRefGoogle Scholar
  99. 99.
    Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen ZB, Shi J, Xiao Z, Hong W, Tian ZQ. Chem Sci, 2018, 9: 5033–5038CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gan Wang
    • 1
  • Biao-Feng Zeng
    • 1
  • Shi-Qiang Zhao
    • 2
  • Qiao-Zan Qian
    • 2
  • Wenjing Hong
    • 2
  • Yang Yang
    • 1
    Email author
  1. 1.Pen-Tung Sah Institute of Micro-Nano Science and TechnologyXiamen UniversityXiamenChina
  2. 2.College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations