Advertisement

Science China Chemistry

, Volume 62, Issue 11, pp 1492–1496 | Cite as

Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides

  • Jiandong Liu
  • Chuanhu LeiEmail author
  • Hegui GongEmail author
Communications
  • 120 Downloads

Abstract

This work describes stereoselective preparation of β-C-aryl/vinyl glucosides via mild Ni-catalyzed reductive arylation and vinylation of C1-glucosyl halides with aryl and vinyl halides. A broad range of aryl halides and vinyl halides were employed to yield C-aryl/vinyl glucosides in 42%–93% yields. Good to excellent β-selectivities were obtained for C-glucosides by using tridentate ligand.

Keywords

nickel-catalyzed reductive coupling β-selective preparation C-aryl/vinyl glucosides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871173, 21572140, 21372151).

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9501_MOESM1_ESM.pdf (5.1 mb)
Stereoselective Preparation of β-C-Aryl/Vinyl Glucosides via Nickel-Catalyzed Reductive Couplings

References

  1. 1.
    For a recent review, see: Yang Y, Yu B. Chem Rev, 2017, 117: 12281–12356CrossRefGoogle Scholar
  2. 2(a).
    Zeng J, Vedachalam S, Xiang S, Liu XW. Org Lett, 2011, 13: 42–45CrossRefGoogle Scholar
  3. 2(b).
    Malmstrøm J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A. J Nat Prod, 2002, 65: 364–367CrossRefGoogle Scholar
  4. 3.
    Han Z, Achilonu MC, Kendrekar PS, Joubert E, Ferreira D, Bonnet SL, van der Westhuizen JH. J Nat Prod, 2014, 77: 583–588CrossRefGoogle Scholar
  5. 4.
    Fischbach MA, Lin H, Liu DR, Walsh CT. Proc Natl Acad Sci USA, 2005, 102: 571–576CrossRefGoogle Scholar
  6. 5(a).
    Compain P, Martin OR. BioOrg Medicinal Chem, 2001, 9: 3077–3092CrossRefGoogle Scholar
  7. 5(b).
    Hultin P. Curr Top Med Chem, 2005, 5: 1299–1331CrossRefGoogle Scholar
  8. 5(c).
    Zou W. Curr Top Med Chem, 2005, 5: 1363–1391CrossRefGoogle Scholar
  9. 5(d).
    Stambaský J, Hocek M, Kocovský P. Chem Rev, 2009, 109: 6729–6764CrossRefGoogle Scholar
  10. 5(e).
    Koester DC, Holkenbrink A, Werz DB. Synthesis, 2010, 19: 3217–3242Google Scholar
  11. 5(f).
    Leclerc E, Pannecoucke X, Ethève-Quelquejeu M, Sollogoub M. Chem Soc Rev, 2013, 42: 4270–4283CrossRefGoogle Scholar
  12. 6(a).
    Sadurní A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R. Chem Eur J, 2018, 24: 2832–2836CrossRefGoogle Scholar
  13. 6(b).
    Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE. Diabetes Vascular Dis Res, 2015, 12: 90–100CrossRefGoogle Scholar
  14. 7.
    Gong H, Sinisi R, Gagné MR. J Am Chem Soc, 2007, 129: 1908–1909CrossRefGoogle Scholar
  15. 8.
    Gong H, Gagne MR. J Am Chem Soc, 2008, 130: 12177–12183CrossRefGoogle Scholar
  16. 9.
    Lemaire S, Houpis IN, Xiao T, Li J, Digard E, Gozlan C, Liu R, Gavryushin A, Diène C, Wang Y, Farina V, Knochel P. Org Lett, 2012, 14: 1480–1483CrossRefGoogle Scholar
  17. 10.
    Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TKM, Nakamura M. J Am Chem Soc, 2017, 139: 10693–10701CrossRefGoogle Scholar
  18. 11.
    Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew Chem Int Ed, 2012, 51: 11101–11104CrossRefGoogle Scholar
  19. 12.
    Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J Am Chem Soc, 2017, 139: 17908–17922CrossRefGoogle Scholar
  20. 13.
    Yi D, Zhu F, Walczak MA. Org Lett, 2018, 20: 1936–1940CrossRefGoogle Scholar
  21. 14.
    Liu J, Gong H. Org Lett, 2018, 20: 7991–7995CrossRefGoogle Scholar
  22. 15(a).
    Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew Chem Int Ed, 2018, 57: 6610–6613CrossRefGoogle Scholar
  23. 15(b).
    Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew Chem Int Ed, 2018, 57: 6614–6618CrossRefGoogle Scholar
  24. 16(a).
    For representative examples for de novo synthesis of C-glycosides: Balachari D, O’Doherty GA. Org Lett, 2000, 2: 4033–4036CrossRefGoogle Scholar
  25. 16(b).
    Balachari D, O’Doherty GA. Org Lett, 2000, 2: 863–866CrossRefGoogle Scholar
  26. 16(c).
    Ahmed MM, O’Doherty GA. Tetrahedron Lett, 2005, 46: 4151–4155CrossRefGoogle Scholar
  27. 17(a).
    Knappke CEI, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem Eur J, 2014, 20: 6828–6842CrossRefGoogle Scholar
  28. 17(b).
    Everson DA, Weix DJ. J Org Chem, 2014, 79: 4793–4798CrossRefGoogle Scholar
  29. 17(c).
    Moragas T, Correa A, Martin R. Chem Eur J, 2014, 20: 8242–8258CrossRefGoogle Scholar
  30. 17(d).
    Wang X, Dai Y, Gong H. Top Curr Chem, 2016, 374: 43CrossRefGoogle Scholar
  31. 17(e).
    Xiao J, Cong XW, Yang GZ, Wang YW, Peng Y. Chem Commun, 2018, 54: 2040–2043CrossRefGoogle Scholar
  32. 17(f).
    Xiao J, Cong XW, Yang GZ, Wang YW, Peng Y. Org Lett, 2018, 20: 1651–1654CrossRefGoogle Scholar
  33. 17(g).
    Luo L, Zhai XY, Wang YW, Peng Y, Gong H. Chem Eur J, 2019, 25: 989–992CrossRefGoogle Scholar
  34. 18.
    See the Supplementary Information for detailsGoogle Scholar
  35. 19.
    Synthetic Strategies toward SGLT2 Inhibitors: Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA. Org Process Res Dev, 2018, 22: 467–488CrossRefGoogle Scholar
  36. 20.
    Liu J, Ren Q, Zhang X, Gong H. Angew Chem Int Ed, 2016, 55: 15544–15548CrossRefGoogle Scholar
  37. 21.
    Klein A, Kaiser A, Wielandt W, Belaj F, Wendel E, Bertagnolli H, Zalis S. Inorg Chem, 2008, 47: 11324–11333CrossRefGoogle Scholar
  38. 22.
    Hamacher C, Hurkes N, Kaiser A, Klein A. Z Anorg Allg Chem, 2007, 633: 2711–2718CrossRefGoogle Scholar
  39. 23.
    Schley ND, Fu GC. J Am Chem Soc, 2014, 136: 16588–16593CrossRefGoogle Scholar
  40. 24.
    Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Brandon RJ, Konovalova T, Desrochers PJ, Pulay P, Vicic DA. J Am Chem Soc, 2006, 128: 13175–13183CrossRefGoogle Scholar
  41. 25.
    Abe H, Shuto S, Matsuda A. J Am Chem Soc, 2001, 123: 11870–11882CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of ChemistryShanghai UniversityShanghaiChina

Personalised recommendations