Materials and structures for the electron transport layer of efficient and stable perovskite solar cells

  • Shizhao Zheng
  • Gaopeng Wang
  • Tongfa Liu
  • Lingyun Lou
  • Shuang Xiao
  • Shihe YangEmail author
Mini Reviews Special Topic: Photovoltaics


The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.


perovskite solar cells electron transport layer metal oxide organic molecules multilayer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Shenzhen Peacock Plan Program (KQTD2016053015544057), the Nanshan Pilot Plan (LHTD20170001), and the National Natural Science Foundation of China (51773230).


  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  3. 3.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643–647CrossRefGoogle Scholar
  4. 4.
    National Renewable Energy Laboratory. Best research: cell efficiency., 2019
  5. 5.
    Zhang W, Wang YC, Li X, Song C, Wan L, Usman K, Fang J. Adv Sci, 2018, 5: 1800159CrossRefGoogle Scholar
  6. 6.
    Wang Y, Yue Y, Yang X, Han L. Adv Energy Mater, 2018, 8: 1800249CrossRefGoogle Scholar
  7. 7.
    Lee JW, Lee TY, Yoo PJ, Grätzel M, Mhaisalkar S, Park NG. J Mater Chem A, 2014, 2: 9251–9259CrossRefGoogle Scholar
  8. 8.
    Mali SS, Shim CS, Park HK, Heo J, Patil PS, Hong CK. Chem Mater, 2015, 27: 1541–1551CrossRefGoogle Scholar
  9. 9.
    Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL. J Mater Chem A, 2015, 3: 19476–19482CrossRefGoogle Scholar
  10. 10.
    Wu WQ, Huang F, Chen D, Cheng YB, Caruso RA. Adv Funct Mater, 2015, 25: 3264–3272CrossRefGoogle Scholar
  11. 11.
    Lee JW, Lee SH, Ko HS, Kwon J, Park JH, Kang SM, Ahn N, Choi M, Kim JK, Park NG. J Mater Chem A, 2015, 3: 9179–9186CrossRefGoogle Scholar
  12. 12.
    Zhang J, Hultqvist A, Zhang T, Jiang L, Ruan C, Yang L, Cheng Y, Edoff M, Johansson EMJ. ChemSusChem, 2017, 10: 3810–3817CrossRefGoogle Scholar
  13. 13.
    Liu D, Kelly TL. Nat Photon, 2013, 8: 133–138CrossRefGoogle Scholar
  14. 14.
    Song J, Zheng E, Bian J, Wang XF, Tian W, Sanehira Y, Miyasaka T. J Mater Chem A, 2015, 3: 10837–10844CrossRefGoogle Scholar
  15. 15.
    Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. J Am Chem Soc, 2015, 137: 6730–6733CrossRefGoogle Scholar
  16. 16.
    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2016, 2: 16177CrossRefGoogle Scholar
  17. 17.
    Han GS, Chung HS, Kim DH, Kim BJ, Lee JW, Park NG, Cho IS, Lee JK, Lee S, Jung HS. Nanoscale, 2015, 7: 15284–15290CrossRefGoogle Scholar
  18. 18.
    Gheno A, Thu Pham TT, Di Bin C, Bouclé J, Ratier B, Vedraine S. Sol Energy Mater Sol Cells, 2017, 161: 347–354CrossRefGoogle Scholar
  19. 19.
    Wang K, Shi Y, Li B, Zhao L, Wang W, Wang X, Bai X, Wang S, Hao C, Ma T. Adv Mater, 2016, 28: 1891–1897CrossRefGoogle Scholar
  20. 20.
    Qin P, Domanski AL, Chandiran AK, Berger R, Butt HJ, Dar MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M. Nanoscale, 2014, 6: 1508–1514CrossRefGoogle Scholar
  21. 21.
    Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Nat Commun, 2013, 4: 2885CrossRefGoogle Scholar
  22. 22.
    Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N, Sepe A, Wiesner U, Friend R, Snaith HJ, Steiner U. Adv Funct Mater, 2014, 24: 6046–6055CrossRefGoogle Scholar
  23. 23.
    Wang J, Qin M, Tao H, Ke W, Chen Z, Wan J, Qin P, Xiong L, Lei H, Yu H, Fang G. Appl Phys Lett, 2015, 106: 121104CrossRefGoogle Scholar
  24. 24.
    Zhang X, Bao Z, Tao X, Sun H, Chen W, Zhou X. RSC Adv, 2014, 4: 64001–64005CrossRefGoogle Scholar
  25. 25.
    Mahmood K, Swain BS, Amassian A. Adv Energy Mater, 2015, 5: 1500568CrossRefGoogle Scholar
  26. 26.
    Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727–3732CrossRefGoogle Scholar
  27. 27.
    Liang PW, Chueh CC, Williams ST, Jen AKY. Adv Energy Mater, 2015, 5: 1402321CrossRefGoogle Scholar
  28. 28.
    Xing Y, Sun C, Yip HL, Bazan GC, Huang F, Cao Y. Nano Energy, 2016, 26: 7–15CrossRefGoogle Scholar
  29. 29.
    Chen R, Wang W, Bu TL, Ku ZL, Zhong J, Peng Y, Xiao S, You W, Huang F, Cheng Y, Fu Z. Acta Phys-Chim Sin, 2019, 35: 401–407Google Scholar
  30. 30.
    Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W, Huang J. Nat Commun, 2016, 7: 12806CrossRefGoogle Scholar
  31. 31.
    Akbulatov AF, Frolova LA, Griffin MP, Gearba IR, Dolocan A, Vanden Bout DA, Tsarev S, Katz EA, Shestakov AF, Stevenson KJ, Troshin PA. Adv Energy Mater, 2017, 7: 1700476CrossRefGoogle Scholar
  32. 32.
    Jiang K, Wu F, Yu H, Yao Y, Zhang G, Zhu L, Yan H. J Mater Chem A, 2018, 6: 16868–16873CrossRefGoogle Scholar
  33. 33.
    Cheng M, Li Y, Liu P, Zhang F, Hajian A, Wang H, Li J, Wang L, Kloo L, Yang X, Sun L. Sol RRL, 2017, 1: 1700046CrossRefGoogle Scholar
  34. 34.
    Jung SK, Heo JH, Lee DW, Lee SC, Lee SH, Yoon W, Yun H, Im SH, Kim JH, Kwon OP. Adv Funct Mater, 2018, 28: 1800346CrossRefGoogle Scholar
  35. 35.
    Zhao D, Zhu Z, Kuo MY, Chueh CC, Jen AKY. Angew Chem Int Ed, 2016, 55: 8999–9003CrossRefGoogle Scholar
  36. 36.
    Wang N, Zhao K, Ding T, Liu W, Ahmed AS, Wang Z, Tian M, Sun XW, Zhang Q. Adv Energy Mater, 2017, 7: 1700522CrossRefGoogle Scholar
  37. 37.
    Wu F, Gao W, Yu H, Zhu L, Li L, Yang C. J Mater Chem A, 2018, 6: 4443–4448CrossRefGoogle Scholar
  38. 38.
    Wang R, Qiao J, He B, Tang X, Wu F, Zhu L. J Mater Chem C, 2018, 6: 8429–8434CrossRefGoogle Scholar
  39. 39.
    Wan L, Li X, Song C, He Y, Zhang W. Sol Energy Mater Sol Cells, 2019, 191: 437–443CrossRefGoogle Scholar
  40. 40.
    Jiang Y, Li J, Xiong S, Jiang F, Liu T, Qin F, Hu L, Zhou Y. J Mater Chem A, 2017, 5: 17632–17639CrossRefGoogle Scholar
  41. 41.
    Yu H, Zhang Q, Han C, Zhu X, Sun X, Yang Q, Yang H, Deng L, Zhao F, Wang K, Hu B. Org Electron, 2018, 63: 137–142CrossRefGoogle Scholar
  42. 42.
    Jiang K, Wu F, Zhu L, Yan H. ACS Appl Mater Interfaces, 2018, 10: 36549–36555CrossRefGoogle Scholar
  43. 43.
    Kim HI, Kim MJ, Choi K, Lim C, Kim YH, Kwon SK, Park T. Adv Energy Mater, 2018, 8: 1702872CrossRefGoogle Scholar
  44. 44.
    Tian L, Hu Z, Liu X, Liu Z, Guo P, Xu B, Xue Q, Yip HL, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11: 5289–5297CrossRefGoogle Scholar
  45. 45.
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  46. 46.
    Song S, Hill R, Choi K, Wojciechowski K, Barlow S, Leisen J, Snaith HJ, Marder SR, Park T. Nano Energy, 2018, 49: 324–332CrossRefGoogle Scholar
  47. 47.
    Noh YW, Lee JH, Jin IS, Park SH, Jung JW. Electrochim Acta, 2019, 294: 337–344CrossRefGoogle Scholar
  48. 48.
    Tavakoli MM, Saliba M, Yadav P, Holzhey P, Hagfeldt A, Zakeeruddin SM, Grätzel M. Adv Energy Mater, 2019, 9: 1802646CrossRefGoogle Scholar
  49. 49.
    Wu SH, Lin MY, Chang SH, Tu WC, Chu CW, Chang YC. J Phys Chem C, 2018, 122: 236–244CrossRefGoogle Scholar
  50. 50.
    Rahman NU, Khan WU, Li W, Khan S, Khan J, Zheng S, Su T, Zhao J, Aldred MP, Chi Z. J Mater Chem A, 2019, 7: 322–329CrossRefGoogle Scholar
  51. 51.
    Zheng S, Li W, Su T, Xie F, Chen J, Yang Z, Zhang Y, Liu S, Aldred MP, Wong KY, Xu J, Chi Z. Sol RRL, 2018, 2: 1700245CrossRefGoogle Scholar
  52. 52.
    Hou Q, Ren J, Chen H, Yang P, Shao Q, Zhao M, Zhao X, He H, Wang N, Luo Q, Guo Z. ChemElectroChem, 2018, 5: 726–731CrossRefGoogle Scholar
  53. 53.
    Zhang J, Tan CH, Du T, Morbidoni M, Lin CT, Xu S, Durrant JR, McLachlan MA. Sci Bull, 2018, 63: 343–348CrossRefGoogle Scholar
  54. 54.
    Xu J, Fang M, Chen J, Zhang B, Yao J, Dai S. ACS Appl Mater Interfaces, 2018, 10: 20578–20590CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shizhao Zheng
    • 1
  • Gaopeng Wang
    • 1
  • Tongfa Liu
    • 1
  • Lingyun Lou
    • 1
  • Shuang Xiao
    • 1
  • Shihe Yang
    • 1
    Email author
  1. 1.Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate SchoolPeking UniversityShenzhenChina

Personalised recommendations