Advertisement

11.2% Efficiency all-polymer solar cells with high open-circuit voltage

  • Yuan Meng
  • Jingnan Wu
  • Xia Guo
  • Wenyan Su
  • Lei Zhu
  • Jin Fang
  • Zhi-Guo Zhang
  • Feng Liu
  • Maojie ZhangEmail author
  • Thomas P. Russell
  • Yongfang Li
Articles

Abstract

Herein, we fabricated all-polymer solar cells (all-PSCs) based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor, and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor. In addition to the complementary absorption and matching energy levels, the optimized blend films possess high cystallinity, predominantly face-on stacking, and a suitable phase separated morphology. With this active layer, the devices exhibited a high Voc of 0.96 V, a superior Jsc of 17.1 mA cm-2, a fine fill factor (FF) of 68.2%, and thus an excellent power conversion efficiency (PCE) of 11.2%, which is the highest value reported to date for single-junction all-PSCs. Furthermore, the devices showed good storage stability. After 80 d of storage in the N2-filled glovebox, the PCE still remained over 90% of the original value. Large-area devices (1.1 cm2) also demonstrated an outstanding performance with a PCE of 9.2%, among the highest values for the reported large-area all-PSCs. These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.

Keywords

all-polymer solar cells fluorine substitution power conversion efficiency wide bandgap polymer polymer acceptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51773142, 51573120, 21734009, 91633301). T. P. Russell was supported by the U.S. Office of Naval Research (N00014-15-1-2244). Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Molecular Foundry, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences.

Supplementary material

11426_2019_9466_MOESM1_ESM.pdf (464 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    Chen S, Jung S, Cho HJ, Kim NH, Jung S, Xu J, Oh J, Cho Y, Kim H, Lee B, An Y, Zhang C, Xiao M, Ki H, Zhang ZG, Kim JY, Li Y, Park H, Yang C. Angew Chem Int Ed, 2018, 57: 13277–13282CrossRefGoogle Scholar
  2. 2.
    Gao L, Zhang ZG, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv Mater, 2016, 28: 1884–1890CrossRefGoogle Scholar
  3. 3.
    Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547CrossRefGoogle Scholar
  4. 4.
    Su W, Meng Y, Guo X, Fan Q, Zhang M, Jiang Y, Xu Z, Dai Y, Xie B, Liu F, Zhang M, Russell TP, Li Y. J Mater Chem A, 2018, 6: 16403–16411CrossRefGoogle Scholar
  5. 5.
    Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec CJ, Janssen RAJ, Bazan GC, Huang F, Cao Y. J Am Chem Soc, 2018, 140: 8934–8943CrossRefGoogle Scholar
  6. 6.
    Fan B, Ying L, Wang Z, He B, Jiang XF, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1243–1251CrossRefGoogle Scholar
  7. 7.
    Wang G, Eastham ND, Aldrich TJ, Ma B, Manley EF, Chen Z, Chen LX, de la Cruz MO, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Adv Energy Mater, 2018, 8: 1702173CrossRefGoogle Scholar
  8. 8.
    Song W, Fan X, Xu B, Yan F, Cui H, Wei Q, Peng R, Hong L, Huang J, Ge Z. Adv Mater, 2018, 30: 1800075CrossRefGoogle Scholar
  9. 9.
    Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906CrossRefGoogle Scholar
  10. 10.
    Zhang K, Xia R, Fan B, Liu X, Wang Z, Dong S, Yip HL, Ying L, Huang F, Cao Y. Adv Mater, 2018, 30: 1803166CrossRefGoogle Scholar
  11. 11.
    Li Z, Ying L, Xie R, Zhu P, Li N, Zhong W, Huang F, Cao Y. Nano Energy, 2018, 51: 434–441CrossRefGoogle Scholar
  12. 12.
    Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12: 157–163CrossRefGoogle Scholar
  13. 13.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  14. 14.
    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128CrossRefGoogle Scholar
  15. 15.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  16. 16.
    Fan Q, Zhu Q, Xu Z, Su W, Chen J, Wu J, Guo X, Ma W, Zhang M, Li Y. Nano Energy, 2018, 48: 413–420CrossRefGoogle Scholar
  17. 17.
    Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434CrossRefGoogle Scholar
  18. 18.
    Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30: 1703973CrossRefGoogle Scholar
  19. 19.
    Yuan Y, Liu C, Byles BW, Yao W, Song B, Cheng M, Huang Z, Amine K, Pomerantseva E, Shahbazian-Yassar R, Lu J. Joule, 2019, 3: 471–484CrossRefGoogle Scholar
  20. 20.
    Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Adv Mater, 2018, 4: 1804699CrossRefGoogle Scholar
  21. 21.
    Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA. J Am Chem Soc, 2015, 137: 4424–4434CrossRefGoogle Scholar
  22. 22.
    Wang X, Lv L, Li L, Chen Y, Zhang K, Chen H, Dong H, Huang J, Shen G, Yang Z, Huang H. Adv Funct Mater, 2016, 26: 6306–6315CrossRefGoogle Scholar
  23. 23.
    Earmme T, Hwang YJ, Murari NM, Subramaniyan S, Jenekhe SA. J Am Chem Soc, 2013, 135: 14960–14963CrossRefGoogle Scholar
  24. 24.
    Zhou E, Cong J, Hashimoto K, Tajima K. Adv Mater, 2013, 25: 6991–6996CrossRefGoogle Scholar
  25. 25.
    Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J. Adv Mater, 2015, 27: 6046–6054CrossRefGoogle Scholar
  26. 26.
    Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540–6548CrossRefGoogle Scholar
  27. 27.
    Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2015, 54: 3648–3652CrossRefGoogle Scholar
  28. 28.
    Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504–6508CrossRefGoogle Scholar
  29. 29.
    Min Y, Dou C, Tian H, Geng Y, Liu J, Wang L. Angew Chem Int Ed, 2018, 57: 2000–2004CrossRefGoogle Scholar
  30. 30.
    Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679–686CrossRefGoogle Scholar
  31. 31.
    Yuan J, Ford MJ, Xu Y, Zhang Y, Bazan GC, Ma W. Adv Energy Mater, 2018, 8: 1703291CrossRefGoogle Scholar
  32. 32.
    Liu X, Zou Y, Wang HQ, Wang L, Fang J, Yang C. ACS Appl Mater Interfaces, 2018, 10: 38302–38309CrossRefGoogle Scholar
  33. 33.
    Chen D, Yao J, Chen L, Yin J, Lv R, Huang B, Liu S, Zhang ZG, Yang C, Chen Y, Li Y. Angew Chem Int Ed, 2018, 57: 4580–4584CrossRefGoogle Scholar
  34. 34.
    Guo Y, Li Y, Awartani O, Han H, Zhao J, Ade H, Yan H, Zhao D. Adv Mater, 2017, 29: 1700309CrossRefGoogle Scholar
  35. 35.
    Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507CrossRefGoogle Scholar
  36. 36.
    Deshmukh KD, Qin T, Gallaher JK, Liu ACY, Gann E, O’Donnell K, Thomsen L, Hodgkiss JM, Watkins SE, McNeill CR. Energy Environ Sci, 2015, 8: 332–342CrossRefGoogle Scholar
  37. 37.
    Chen S, An Y, Dutta GK, Kim Y, Zhang ZG, Li Y, Yang C. Adv Funct Mater, 2017, 27: 1603564CrossRefGoogle Scholar
  38. 38.
    Oh J, Kranthiraja K, Lee C, Gunasekar K, Kim S, Ma B, Kim BJ, Jin SH. Adv Mater, 2016, 28: 10016–10023CrossRefGoogle Scholar
  39. 39.
    Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AKY. Adv Mater, 2015, 27: 3310–3317CrossRefGoogle Scholar
  40. 40.
    Deshmukh KD, Matsidik R, Prasad SKK, Chandrasekaran N, Welford A, Connal LA, Liu ACY, Gann E, Thomsen L, Kabra D, Hodgkiss JM, Sommer M, McNeill CR. ACS Appl Mater Interfaces, 2018, 10: 955–969CrossRefGoogle Scholar
  41. 41.
    Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660CrossRefGoogle Scholar
  42. 42.
    Benten H, Nishida T, Mori D, Xu H, Ohkita H, Ito S. Energy Environ Sci, 2016, 9: 135–140CrossRefGoogle Scholar
  43. 43.
    Guo B, Li W, Guo X, Meng X, Ma W, Zhang M, Li Y. Adv Mater, 2017, 29: 1702291CrossRefGoogle Scholar
  44. 44.
    Su W, Fan Q, Guo X, Guo B, Li W, Zhang Y, Zhang M, Li Y. J Mater Chem A, 2016, 4: 14752–14760CrossRefGoogle Scholar
  45. 45.
    Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005CrossRefGoogle Scholar
  46. 46.
    Liu F, Gu Y, Shen X, Ferdous S, Wang HW, Russell TP. Prog Polymer Sci, 2013, 38: 1990–2052CrossRefGoogle Scholar
  47. 47.
    Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuan Meng
    • 1
  • Jingnan Wu
    • 1
  • Xia Guo
    • 1
  • Wenyan Su
    • 1
  • Lei Zhu
    • 2
  • Jin Fang
    • 1
  • Zhi-Guo Zhang
    • 5
  • Feng Liu
    • 2
  • Maojie Zhang
    • 1
    Email author
  • Thomas P. Russell
    • 3
    • 4
  • Yongfang Li
    • 1
    • 5
  1. 1.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Department of Physics and Astronomy and Collaborative Innovation Center of IFSAShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Polymer Science and Engineering DepartmentUniversity of MassachusettsAmherstUnited States
  4. 4.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
  5. 5.CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations