Science China Chemistry

, Volume 62, Issue 7, pp 897–903 | Cite as

Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors

  • Lei Yang
  • Linqing Qin
  • Yunxiao Xu
  • Huotian Zhang
  • Lei Lv
  • Kepeng Chen
  • Xinyu Sui
  • Yangguang Zhong
  • Yuan Guo
  • Feng GaoEmail author
  • Jianzhang Zhao
  • Yuhao Li
  • Xinfeng LiuEmail author
  • Yuanping YiEmail author
  • Xinhui Lu
  • Aidong Peng
  • Hui HuangEmail author


The effect of chalcogen heteroatom variation on donor materials has been systematically investigated. However, this effect on acceptors has rarely been explored. Herein, nonfullerene acceptors BFPSP and BFPTP were reported by simply changing the chalcogen atoms from S to Te. The differences between BFPSP and BFPTP in light absorption, energy levels, excited-state lifetimes, energy loss, charge mobilities, morphology, and photovoltaic properties were systematically investigated to understand the heteroatom effects. More importantly, the electroluminescence spectra, external quantum efficiency of photovoltaics and TD-DFT calculations revealed that the triplet excited state (T1) in energy of BFPTP equals to the charge transfer (CT) state in PBDB-T:BFPTP, which allows T1 excitons, generated by intersystem crossing, to split into free charges to contribute to the efficiency. This contribution provides a strategy for tuning the photophysical properties of nonfullerene acceptors and designing high performance triplet materials for OSCs.

heteroatom effects triplet state tellurophene nonfullerene acceptor organic solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21774130, 21673054), the National Key Research and Development Program of China (2018FYA 0305800), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC046), Key Research Program of the Chinese Academy of Sciences (XDPB08-2), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000, XDB12020200), External Cooperation Programs of Chinese Academy of Sciences (211211KYSB20170014), Innovation Program of Aerospace Science and Technology, China Aerospace Science and Technology Corporation, One Hundred Talents Program of Chinese Academy of Sciences, and University of Chinese Academy of Sciences, the Ministry of Science and Technology (2017YFA0205004, 2016YFA0200700), Beijing Natural Research Foundation (4182076). We also thank Prof. Jianpu Wang, Dr. Qiming Peng, and Zewu Fu for magneto-photocurrent measurements.

Supplementary material

11426_2019_9462_MOESM1_ESM.docx (2.2 mb)
Sulfur vs. Tellurium: the Heteroatom Effects on the Nonfullerene Acceptors


  1. 1.
    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128CrossRefPubMedGoogle Scholar
  2. 2.
    Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2011, 29: 1603154CrossRefGoogle Scholar
  3. 3.
    Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 1: 13094CrossRefGoogle Scholar
  4. 4.
    Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 1: 13651CrossRefGoogle Scholar
  5. 5.
    Xiao Z, Jia X, Ding L. Sci Bull, 2011, 62: 1562–1564CrossRefGoogle Scholar
  6. 6.
    Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J. Adv Mater, 2018, 30: 1800613CrossRefGoogle Scholar
  7. 7.
    Sun H, Chen F, Chen ZK. Mater Today, 2018, Google Scholar
  8. 8.
    Yang L, Chen Y, Chen S, Dong T, Deng W, Lv L, Yang S, Yan H, Huang H. J Power Sources, 2016, 324: 538–546CrossRefGoogle Scholar
  9. 9.
    Zhong Y, Kumar B, Oh S, Trinh MT, Wu Y, Elbert K, Li P, Zhu X, Xiao S, Ng F, Steigerwald ML, Nuckolls C. J Am Chem Soc, 2014, 136: 8122–8130CrossRefPubMedGoogle Scholar
  10. 10.
    Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375–380CrossRefPubMedGoogle Scholar
  11. 11.
    Ball M, Zhong Y, Fowler B, Zhang B, Li P, Etkin G, Paley DW, Decatur J, Dalsania AK, Li H, Xiao S, Ng F, Steigerwald ML, Nuckolls C. J Am Chem Soc, 2016, 138: 12861–12867CrossRefPubMedGoogle Scholar
  12. 12.
    Zhong Y, Trinh MT, Chen R, Purdum GE, Khlyabich PP, Sezen M, Oh S, Zhu H, Fowler B, Zhang B, Wang W, Nam CY, Sfeir MY, Black CT, Steigerwald ML, Loo YL, Ng F, Zhu XY, Nuckolls C. Nat Commun, 2015, 6: 8242CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai JYL, Hu H, Ma T, Hu R, Yu D, Huang X, Tang BZ, Yan H. Adv Mater, 2015, 2015: 1015–1020CrossRefGoogle Scholar
  14. 14.
    Meng D, Fu H, Xiao C, Meng X, Winands T, Ma W, Wei W, Fan B, Huo L, Doltsinis NL, Li Y, Sun Y, Wang Z. J Am Chem Soc, 2016, 138: 10184–10190CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang B, Zhang X, Zhan C, Lu Z, Huang J, Ding X, He S, Yao J. Polym Chem, 2013, 4: 4631CrossRefGoogle Scholar
  16. 16.
    Zhao D, Wu Q, Cai Z, Zheng T, Chen W, Lu J, Yu L. Chem Mater, 2016, 28: 1139–1146CrossRefGoogle Scholar
  17. 17.
    Hadmojo WT, Nam SY, Shin TJ, Yoon SC, Jang SY, Jung IH. J Mater Chem A, 2016, 4: 12308–12318CrossRefGoogle Scholar
  18. 18.
    Zhao J, Li Y, Zhang J, Zhang L, Lai JYL, Jiang K, Mu C, Li Z, Chan CLC, Hunt A, Mukherjee S, Ade H, Huang X, Yan H. J Mater Chem A, 2015, 3: 20108–20112CrossRefGoogle Scholar
  19. 19.
    Zang Y, Li CZ, Chueh CC, Williams ST, Jiang W, Wang ZH, Yu JS, Jen AKY. Adv Mater, 2014, 26: 5708–5714CrossRefPubMedGoogle Scholar
  20. 20.
    Chen Y, Tang A, Zhang X, Lu Z, Huang J, Zhan C, Yao J. J Mater Chem A, 2014, 2: 1869–1876CrossRefGoogle Scholar
  21. 21.
    Guo X, Zhou N, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li S, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ. Nat Photon, 2013, 1: 825–833CrossRefGoogle Scholar
  22. 22.
    Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149–14157CrossRefPubMedGoogle Scholar
  23. 23.
    Brédas JL, Calbert JP, da Silva Filho DA, Cornil J. Proc Natl Acad Sci USA, 2002, 99: 5804–5809CrossRefPubMedGoogle Scholar
  24. 24.
    Li S, Liu W, Li CZ, Lau TK, Lu X, Shi M, Chen H. J Mater Chem A, 2016, 4: 14983–14987CrossRefGoogle Scholar
  25. 25.
    Hartnett PE, Matte HSSR, Eastham ND, Jackson NE, Wu Y, Chen LX, Ratner MA, Chang RPH, Hersam MC, Wasielewski MR, Marks TJ. Chem Sci, 2016, 1: 3543–3555CrossRefGoogle Scholar
  26. 26.
    Jung EH, Bae S, Yoo TW, Jo WH. Polym Chem, 2014, 5: 6545–6550CrossRefGoogle Scholar
  27. 27.
    Ashraf RS, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder BC, Holliday S, Hurhangee M, Nielsen CB, Sirringhaus H, McCulloch I. J Am Chem Soc, 2015, 137: 1314–1321CrossRefPubMedGoogle Scholar
  28. 28.
    Xu Z, Fan Q, Meng X, Guo X, Su W, Ma W, Zhang M, Li Y. Chem Mater, 2011, 29: 4811–4818CrossRefGoogle Scholar
  29. 29.
    Wu JS, Jheng JF, Chang JY, Lai YY, Wu KY, Wang CL, Hsu CS. Polym Chem, 2014, 5: 6472–6479CrossRefGoogle Scholar
  30. 30.
    Zhong H, Wu CH, Li CZ, Carpenter J, Chueh CC, Chen JY, Ade H, Jen AKY. Adv Mater, 2016, 28: 951–958CrossRefPubMedGoogle Scholar
  31. 31.
    Mei J, Ogawa K, Kim YG, Heston NC, Arenas DJ, Nasrollahi Z, McCarley TD, Tanner DB, Reynolds JR, Schanze KS. ACS Appl Mater Interfaces, 2009, 1: 150–161CrossRefPubMedGoogle Scholar
  32. 32.
    Schulz GL, Holdcroft S. Chem Mater, 2008, 20: 5351–5355CrossRefGoogle Scholar
  33. 33.
    Shao Y, Yang Y. Adv Mater, 2005, 11: 2841–2844CrossRefGoogle Scholar
  34. 34.
    Peumans P, Yakimov A, Forrest SR. J Appl Phys, 2003, 93: 3693–3723CrossRefGoogle Scholar
  35. 35.
    Etherington MK, Wang J, Chow PCY, Greenham NC. Appl Phys Lett, 2014, 104: 063304CrossRefGoogle Scholar
  36. 36.
    Wang J, Chepelianskii A, Gao F, Greenham NC. Nat Commun, 2012, 3: 1191CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rao A, Chow PCY, Gélinas S, Schlenker CW, Li CZ, Yip HL, Jen AKY, Ginger DS, Friend RH. Nature, 2013, 500: 435–439CrossRefPubMedGoogle Scholar
  38. 38.
    Biskup T, Sommer M, Rein S, Meyer DL, Kohlstädt M, Würfel U, Weber S. Angew Chem Int Ed, 2015, 54: 7707–7710CrossRefGoogle Scholar
  39. 39.
    Hertel D, Setayesh S, Nothofer HG, Scherf U, Müllen K, Bässler H. Adv Mater, 2001, 13: 65–70CrossRefGoogle Scholar
  40. 40.
    Monkman AP, Burrows HD, Hartwell LJ, Horsburgh LE, Hamblett I, Navaratnam S. Phys Rev Lett, 2001, 86: 1358–1361CrossRefPubMedGoogle Scholar
  41. 41.
    Köhler A, Beljonne D. Adv Funct Mater, 2004, 14: 11–18CrossRefGoogle Scholar
  42. 42.
    Vandewal K, Gadisa A, Oosterbaan WD, Bertho S, Banishoeib F, Van Severen I, Lutsen L, Cleij TJ, Vanderzande D, Manca JV. Adv Funct Mater, 2008, 18: 2064–2070CrossRefGoogle Scholar
  43. 43.
    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Nat Mater, 2009, 8: 904–909CrossRefPubMedGoogle Scholar
  44. 44.
    Yang L, Gu W, Lv L, Chen Y, Yang Y, Ye P, Wu J, Hong L, Peng A, Huang H. Angew Chem Int Ed, 2011, 51: 1096–1102Google Scholar
  45. 45.
    Chen Y, Ye P, Jia X, Gu W, Xu X, Wu X, Wu J, Liu F, Zhu ZG, Huang H. J Mater Chem A, 2011, 5: 19697–19702CrossRefGoogle Scholar
  46. 46.
    Wang K, Zheng CJ, Liu W, Liang K, Shi YZ, Tao SL, Lee CS, Ou XM, Zhang XH. Adv Mater, 2011, 29: 1701476CrossRefGoogle Scholar
  47. 47.
    Hu B, Yan L, Shao M. Adv Mater, 2009, 21: 1500–1516CrossRefGoogle Scholar
  48. 48.
    Song JY, Stingelin N, Drew AJ, Kreouzis T, Gillin WP. Phys Rev B, 2010, 82: 085205CrossRefGoogle Scholar
  49. 49.
    Ern V, Merrifield RE. Phys Rev Lett, 1968, 21: 609–611CrossRefGoogle Scholar
  50. 50.
    Xu W, Zhang Y, Cheng G, Jian W, Millett PC, Koch CC, Mathaudhu SN, Zhu Y. Nat Commun, 2013, 4: 2288CrossRefPubMedGoogle Scholar
  51. 51.
    Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089CrossRefGoogle Scholar
  52. 52.
    Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519CrossRefGoogle Scholar
  53. 53.
    Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020CrossRefGoogle Scholar
  54. 54.
    Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352CrossRefGoogle Scholar
  55. 55.
    Albrecht S, Tumbleston JR, Janietz S, Dumsch I, Allard S, Scherf U, Ade H, Neher D. J Phys Chem Lett, 2014, 5: 1131–1138CrossRefPubMedGoogle Scholar
  56. 56.
    Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park HI, Kim SO, Yu L. Nano Lett, 2013, 13: 2365–2369CrossRefPubMedGoogle Scholar
  57. 57.
    He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636–4643CrossRefPubMedGoogle Scholar
  58. 58.
    Schilinsky P, Waldauf C, Brabec CJ. Appl Phys Lett, 2002, 81: 3885–3887CrossRefGoogle Scholar
  59. 59.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 591–595CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lei Yang
    • 1
    • 2
  • Linqing Qin
    • 1
  • Yunxiao Xu
    • 1
  • Huotian Zhang
    • 3
  • Lei Lv
    • 1
  • Kepeng Chen
    • 6
  • Xinyu Sui
    • 4
  • Yangguang Zhong
    • 4
  • Yuan Guo
    • 7
  • Feng Gao
    • 3
    Email author
  • Jianzhang Zhao
    • 6
  • Yuhao Li
    • 8
  • Xinfeng Liu
    • 4
    • 5
    Email author
  • Yuanping Yi
    • 7
    Email author
  • Xinhui Lu
    • 8
  • Aidong Peng
    • 1
  • Hui Huang
    • 1
    Email author
  1. 1.College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Department of Chemical EngineeringImperial College LondonLondonUK
  3. 3.Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
  4. 4.Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina
  7. 7.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  8. 8.Department of PhysicsThe Chinese University of Hong KongShatin, NTChina

Personalised recommendations