Advertisement

Research activities on perovskite solar cells in China

  • Yanbo Wang
  • Liyuan HanEmail author
Reviews

Abstract

Perovskite solar cells (PSCs) have attracted much attention because of their high efficiencies and low costs for production. Although academic research started late in China, compared to that in Europe and Korea, the majority of active PSC research is now conducted in China; furthermore, Chinese research groups currently hold the certified highest efficiency record for both an individual PSC and a PSC module. China is also the world’s largest supplier of solar modules, making it a promising country in which to realize the commercialization of PSCs. Herein, we review PSC research activities undertaken in China (both academic and industrial) and discuss significant remaining challenges to overcome for early commercialization of PSCs. We propose that research activities shift away from material and device structure development toward improving PSC stability and developing methods for large-area module fabrication. In addition, we suggest that a recognized certification center is urgently needed in China to further accelerate PSC research.

En

perovskite solar cell high efficiency stability commercialization China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. D. Cui and Dr. Z. Dai from Shanghai Jiao Tong University (China) for collecting part of the data discussed in this review. This work was supported by the National Natural Science Foundation of China (11574199, 11674219).

References

  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643–647CrossRefGoogle Scholar
  3. 3.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  4. 4.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319CrossRefGoogle Scholar
  5. 5.
    Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395–398CrossRefGoogle Scholar
  6. 6.
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897–903CrossRefGoogle Scholar
  7. 7.
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  8. 8.
    Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Prog Photovolt Res Appl, 2019, 27: 3–12CrossRefGoogle Scholar
  9. 9.
    Cai ML, Wu YZ, Chen H, Yang XD, Qiang YH, Han LY. Adv Sci, 2017, 4: 1600269CrossRefGoogle Scholar
  10. 10.
    Wang Y, Yue Y, Yang X, Han L. Adv Energy Mater, 2018, 8: 1800249CrossRefGoogle Scholar
  11. 11.
    Yang D, Yang R, Zhang J, Yang Z, (Frank) Liu S, Li C. Energy Environ Sci, 2015, 8: 3208–3214CrossRefGoogle Scholar
  12. 12.
    Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X. ACS Appl Mater Interfaces, 2014, 6: 15959–15965CrossRefGoogle Scholar
  13. 13.
    Wu YZ, Yang XD, Chen H, Zhang K, Qin CJ, Liu J, Peng WQ, Islam A, Bi EB, Ye F, Yin MS, Zhang P, Han LY. Appl Phys Express, 2014, 7: 052301CrossRefGoogle Scholar
  14. 14.
    Yang D, Zhou X, Yang R, Yang Z, Yu W, Wang X, Li C, Liu SF, Chang RPH. Energy Environ Sci, 2016, 9: 3071–3078CrossRefGoogle Scholar
  15. 15.
    Ito S, Tanaka S, Manabe K, Nishino H. J Phys Chem C, 2014, 118: 16995–17000CrossRefGoogle Scholar
  16. 16.
    Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. J Am Chem Soc, 2015, 137: 6730–6733CrossRefGoogle Scholar
  17. 17.
    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2017, 2: 1–7CrossRefGoogle Scholar
  18. 18.
    Jiang Q, Chu ZN, Wang PY, Yang XL, Liu H, Wang Y, Yin ZG, Wu JL, Zhang XW, You JB. Adv Mater, 2017, 29: 1703852CrossRefGoogle Scholar
  19. 19.
    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu SF. Nat Commun, 2018, 9: 3239CrossRefGoogle Scholar
  20. 20.
    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S. Chem Commun, 2013, 49: 7277–7279CrossRefGoogle Scholar
  21. 21.
    Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727–3732CrossRefGoogle Scholar
  22. 22.
    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948CrossRefGoogle Scholar
  23. 23.
    Sessolo M, Bolink HJ. Science, 2015, 350: 917CrossRefGoogle Scholar
  24. 24.
    Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148CrossRefGoogle Scholar
  25. 25.
    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442–1446CrossRefGoogle Scholar
  26. 26.
    Liu Y, Ren X, Zhang J, Yang Z, Yang D, Yu F, Sun J, Zhao C, Yao Z, Wang B, Wei Q, Xiao F, Fan H, Deng H, Deng L, Liu SF. Sci China Chem, 2017, 60: 1367–1376CrossRefGoogle Scholar
  27. 27.
    Fröbius AC, Funch P. Nat Commun, 2017, 8: 9CrossRefGoogle Scholar
  28. 28.
    Liu YC, Yang Z, Liu SZ. Adv Sci, 2018, 5: 1700471CrossRefGoogle Scholar
  29. 29.
    Lal NN, White TP, Catchpole KR. IEEE J Photovoltaics, 2014, 4: 1380–1386CrossRefGoogle Scholar
  30. 30.
    Zhu S, Hou F, Huang W, Yao X, Shi B, Ren Q, Chen J, Yan L, An S, Zhou Z, Ren H, Wei C, Huang Q, Li Y, Hou G, Chen X, Ding Y, Wang G, Li B, Zhao Y, Zhang X. Sol RRL, 2018, 2: 1800176CrossRefGoogle Scholar
  31. 31.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982–988CrossRefGoogle Scholar
  32. 32.
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476–480CrossRefGoogle Scholar
  33. 33.
    Xie F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942–1949CrossRefGoogle Scholar
  34. 34.
    Wu YZ, Xie FX, Chen H, Yang XD, Su HM, Cai ML, Zhou ZM, Noda T, Han LY. Adv Mater, 2017, 29: 1701073CrossRefGoogle Scholar
  35. 35.
    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Nat Commun, 2018, 9: 2225CrossRefGoogle Scholar
  36. 36.
    Wang Y, Zhang T, Kan M, Zhao Y. J Am Chem Soc, 2018, 140: 12345–12348CrossRefGoogle Scholar
  37. 37.
    Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H. Adv Mater, 2018, 30: 1705786CrossRefGoogle Scholar
  38. 38.
    Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H. Sol RRL, 2017, 1: 1600019CrossRefGoogle Scholar
  39. 39.
    Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235CrossRefGoogle Scholar
  40. 40.
    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L. Energy Environ Sci, 2014, 7: 2963–2967CrossRefGoogle Scholar
  41. 41.
    Jiang X, Yu Z, Li HB, Zhao Y, Qu J, Lai J, Ma W, Wang D, Yang X, Sun L. J Mater Chem A, 2017, 5: 17862–17866CrossRefGoogle Scholar
  42. 42.
    Zhang J, Xu B, Yang L, Ruan C, Wang L, Liu P, Zhang W, Vlachopoulos N, Kloo L, Boschloo G, Sun L, Hagfeldt A, Johansson EMJ. Adv Energy Mater, 2018, 8: 1701209CrossRefGoogle Scholar
  43. 43.
    Hua Y, Xu B, Liu P, Chen H, Tian H, Cheng M, Kloo L, Sun L. Chem Sci, 2016, 7: 2633–2638CrossRefGoogle Scholar
  44. 44.
    Cheng M, Chen C, Xu B, Hua Y, Zhang F, Kloo L, Sun L. J Energy Chem, 2015, 24: 698–706CrossRefGoogle Scholar
  45. 45.
    Funnell T, Tasaki S, Oloumi A, Araki S, Kong E, Yap D, Nakayama Y, Hughes CS, Cheng SWG, Tozaki H, Iwatani M, Sasaki S, Ohashi T, Miyazaki T, Morishita N, Morishita D, Ogasawara-Shimizu M, Ohori M, Nakao S, Karashima M, Sano M, Murai A, Nomura T, Uchiyama N, Kawamoto T, Hara R, Nakanishi O, Shumansky K, Rosner J, Wan A, McKinney S, Morin GB, Nakanishi A, Shah S, Toyoshiba H, Aparicio S. Nat Commun, 2017, 8: 7CrossRefGoogle Scholar
  46. 46.
    Li JW, Dong QS, Li N, Wang LD. Adv Energy Mater, 2017, 7: 8Google Scholar
  47. 47.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345: 295–298CrossRefGoogle Scholar
  48. 48.
    Li X, Tschumi M, Han H, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Nazeeruddin MK, Zakeeruddin SM, Grätzel M. Energy Tech, 2015, 3: 551–555CrossRefGoogle Scholar
  49. 49.
    Cai M, Ishida N, Li X, Yang X, Noda T, Wu Y, Xie F, Naito H, Fujita D, Han L. Joule, 2018, 2: 296–306CrossRefGoogle Scholar
  50. 50.
    Park NG, Grätzel M, Miyasaka T, Zhu K, Emery K. Nat Energy, 2016, 1: 16152CrossRefGoogle Scholar
  51. 51.
    Hacke P, Terwilliger K, Glick S, Trudell D, Bosco N, Johnston S, Kurtz S. Test-to-failure of crystalline silicon modules. In: 2010 35th IEEE Photovoltaic Specialists Conference. Honolulu, HI: IEEE, 2010Google Scholar
  52. 52.
    Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L. Energy Environ Sci, 2016, 9: 2295–2301CrossRefGoogle Scholar
  53. 53.
    Ye F, Tang WT, Xie FX, Yin MS, He JJ, Wang YB, Chen H, Qiang YH, Yang XD, Han LY. Adv Mater, 2017, 29: 1701440CrossRefGoogle Scholar
  54. 54.
    Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J. Energy Environ Sci, 2015, 8: 1544–1550CrossRefGoogle Scholar
  55. 55.
    Qin T, Huang W, Kim JE, Vak D, Forsyth C, McNeill CR, Cheng YB. Nano Energy, 2017, 31: 210–217CrossRefGoogle Scholar
  56. 56.
    Wang Y, Liu X, Zhou Z, Ru P, Chen H, Yang X, Han L. Adv Mater, 2019: e1803231Google Scholar
  57. 57.
    Yin MS, Xie F X, Li X, Wu YZ, Yang XD, Ye F, Wang YB, He JJ, Tang WT, Bi EB, Chen H, Han LY. Appl Phys Express, 2017, 10: 076601CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations