A rapid and operator-safe powder approach for latent fingerprint detection using hydrophilic Fe3O4@SiO2-CdTe nanoparticles

  • Zhaolei Wang
  • Xue Jiang
  • Wenbin LiuEmail author
  • Guolin Lu
  • Xiaoyu HuangEmail author


A new kind of bifunctional magnetic-fluorescent nanoparticles (NPs) with abundant carboxyls on the surface has been prepared by covalently combining glutathiose (GSH)-modified CdTe quantum dots (QDs) with Fe3O4@SiO2 NPs. The silica-coated Fe3O4 NPs were functionalized with amino groups by (3-aminopropyl)triethoxysilane to provide Fe3O4@SiO2-NH2 NPs, which was then chemically conjugated with GSH-modified CdTe QDs to form bifunctional magnetic-fluorescent NPs, Fe3O4@SiO2-NH-CO-CdTe-QDs NPs. The properties and morphologies of Fe3O4@SiO2-NH-CO-CdTe-QDs NPs were investigated by FTIR, Xray diffraction, transmission electron microscopy (TEM), absorption and fluorescence spectroscopy and vibrating sample magnetometry. TEM images display that Fe3O4@SiO2-NH-CO-CdTe-QDs NPs possess spherical core-shell structure with a uniform size about 50 nm. The bifunctional NPs were found to exhibit good magnetic and strong fluorescent properties favorable for their application in the detection of latent fingerprints. Furthermore, the carboxyls on the surface of NPs have good absorptions with water in air and the residues of fingerprints so as to not only avoid dust flying to protect the health of operators, but also improve the efficiency of detection.


fingerprint magnetic nanoparticle fluorescence quantum dot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Key Research and Development Program of China (213 project), National Basic Research Program of China (2015CB931900), National Science Foundation for Distinguished Young Scholars (51825304), the National Natural Science Foundation of China (21632009, 21674124, 21704110), Strategic Priority Research Program of Chinese Academy of Sciences (XDB20000000), Shanghai Scientific and Technological Innovation Project (16DZ1205600, 16JC1402500, 17DZ1205401, 17DZ1205402, 18JC1410600, 18JC1415500, 18ZR1448600) and Opening Project of Shanghai Key Laboratory of Crime Scene Evidence (2017XCWZK24, 2015XCWZK15).

Supplementary material

11426_2019_9460_MOESM1_ESM.docx (1.8 mb)
Supplementary material, approximately 228 KB.


  1. 1.
    Cadd S, Islam M, Manson P, Bleay S. Sci Justice, 2015, 55: 219–238CrossRefGoogle Scholar
  2. 2.
    Croxton RS, Baron MG, Butler D, Kent T, Sears VG. Forensic Sci Int, 2010, 199: 93–102CrossRefGoogle Scholar
  3. 3.
    Feine I, Shpitzen M, Geller B, Salmon E, Peleg T, Roth J, Gafny R. Forensic Sci Int, 2017, 276: 107–110CrossRefGoogle Scholar
  4. 4.
    Hong S, Hong I, Han A, Seo JY, Namgung J. Forensic Sci Int, 2015, 257: 403–408CrossRefGoogle Scholar
  5. 5.
    Levin-Elad M, Liptz Y, Bar-Or KL, Almog J. Forensic Sci Int, 2017, 271: 8–12CrossRefGoogle Scholar
  6. 6.
    Tahtouh M, Despland P, Shimmon R, Kalman JR, Reedy BJ. J Forensic Sci, 2007, 52: 1089–1096CrossRefGoogle Scholar
  7. 7.
    Andrade GRS, Nascimento CC, Santos YH, Costa LP, Almeida LE, Gimenez IF. Dyes Pigments, 2018, 155: 202–211CrossRefGoogle Scholar
  8. 8.
    Girod A, Ramotowski R, Weyermann C. Forensic Sci Int, 2012, 223: 10–24CrossRefGoogle Scholar
  9. 9.
    Kent T. Forensic Sci Int, 2016, 266: 134–138CrossRefGoogle Scholar
  10. 10.
    Uppal JS, Li XF, Le XC. Sci China Chem, 2018, 61: 375–376CrossRefGoogle Scholar
  11. 11.
    Wei Q, Li X, Du X, Zhang X, Zhang M. Sci China Chem, 2017, 60: 1250–1257CrossRefGoogle Scholar
  12. 12.
    Sodhi GS, Kaur J. Forensic Sci Int, 2001, 120: 172–176CrossRefGoogle Scholar
  13. 13.
    van Dam A, van Beek FT, Aalders MCG, van Leeuwen TG, Lambrechts SAG. Sci Justice, 2016, 56: 143–154CrossRefGoogle Scholar
  14. 14.
    Kaewsaneha C, Opaprakasit P, Polpanich D, Smanmoo S, Tangboriboonrat P. J Colloid Interface Sci, 2012, 377: 145–152CrossRefGoogle Scholar
  15. 15.
    Lu Y, Yin Y, Mayers BT, Xia Y. Nano Lett, 2002, 2: 183–186CrossRefGoogle Scholar
  16. 16.
    Chao D, Liu Y, Zhu Z. Mater Lett, 2018, 217: 239–242CrossRefGoogle Scholar
  17. 17.
    Yu L, Wu H, Wu B, Wang Z, Cao H, Fu C, Jia N. Nano-Micro Lett, 2014, 6: 258–267CrossRefGoogle Scholar
  18. 18.
    Liu J, He W, Zhang L, Zhang Z, Zhu J, Yuan L, Chen H, Cheng Z, Zhu X. Langmuir, 2011, 27: 12684–12692CrossRefGoogle Scholar
  19. 19.
    Lu Y, He B, Shen J, Li J, Yang W, Yin M. Nanoscale, 2015, 7: 1606–1609CrossRefGoogle Scholar
  20. 20.
    Lu Y, Zheng Y, You S, Wang F, Gao Z, Shen J, Yang W, Yin M. ACS Appl Mater Interfaces, 2015, 7: 5226–5232CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Pan S, Teng X, Luo Y, Li G. J Phys Chem C, 2008, 112: p9623–9626CrossRefGoogle Scholar
  22. 22.
    Gaponik N, Radtchenko IL, Sukhorukov GB, Rogach AL. Langmuir, 2004, 20: 1449–1452CrossRefGoogle Scholar
  23. 23.
    Singh P, Prabhune AA, Tripathi CSP, Guin D. ACS Sustain Chem Eng, 2016, 5: 982–987CrossRefGoogle Scholar
  24. 24.
    Chin PTK, de Mello Donegá C, van Bavel SS, Meskers SCJ, Sommerdijk NAJM, Janssen RAJ. J Am Chem Soc, 2007, 129: 14880–14886CrossRefGoogle Scholar
  25. 25.
    Deng Z, Schulz O, Lin S, Ding B, Liu X, Wei XX, Ros R, Yan H, Liu Y. J Am Chem Soc, 2010, 132: 5592–5593CrossRefGoogle Scholar
  26. 26.
    Wang, Zhang H, Zhang H, Li H, Sun H, Yang B. J Phys Chem C, 2007, 111: 2465–2469CrossRefGoogle Scholar
  27. 27.
    Shukla N, Nigra MM, Ondeck AD. Nano-Micro Lett, 2012, 4: 52–56CrossRefGoogle Scholar
  28. 28.
    Menzel ER, Takatsu M, Murdock RH, Bouldin K, Cheng KH. J Forensic Sci, 2000, 45: 770–773CrossRefGoogle Scholar
  29. 29.
    Menzel ER, Savoy SM, Ulvick SJ, Cheng KH, Murdock RH, Sudduth MR. J Forensic Sci, 2000, 45: 545–551CrossRefGoogle Scholar
  30. 30.
    Cai K, Yang R, Wang Y, Yu X, Liu J. Forensic Sci Int, 2013, 226: 240–243CrossRefGoogle Scholar
  31. 31.
    Shi W, Du D, Shen B, Cui C, Lu L, Wang L, Zhang J. ACS Appl Mater Interfaces, 2016, 8: 20831–20838CrossRefGoogle Scholar
  32. 32.
    Shi W, Lu D, Wang L, Teng F, Zhang J. RSC Adv, 2015, 5: 106038–106043CrossRefGoogle Scholar
  33. 33.
    Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, Zhang J, Mao C, Xu S. Langmuir, 2010, 26: 1278–1284CrossRefGoogle Scholar
  34. 34.
    Thakur D, Deng S, Baldet T, Winter JO. Nanotechnology, 2009, 20: 485601CrossRefGoogle Scholar
  35. 35.
    Koc K, Karakus B, Rajar K, Alveroglu E. Superlattices Microstruct, 2017, 110: 198–204CrossRefGoogle Scholar
  36. 36.
    Sun L, Zang Y, Sun M, Wang H, Zhu X, Xu S, Yang Q, Li Y, Shan Y. J Colloid Interface Sci, 2010, 350: 90–98CrossRefGoogle Scholar
  37. 37.
    Sun Y, Ding X, Zheng Z, Cheng X, Hu X, Peng Y. Eur Polymer J, 2007, 43: 762–772CrossRefGoogle Scholar
  38. 38.
    Lee MJ, Lee J, Yang HS, Hong KS. Curr Appl Phys, 2017, 17: 880–884CrossRefGoogle Scholar
  39. 39.
    Li M, Ge Y, Chen Q, Xu S, Wang N, Zhang X. Talanta, 2007, 72: 89–94CrossRefGoogle Scholar
  40. 40.
    Liu J, Shi Z, Yu Y, Yang R, Zuo S. J Colloid Interface Sci, 2010, 342: 278–282CrossRefGoogle Scholar
  41. 41.
    Ratnesh RK, Mehata MS. Opt Mater, 2017, 64: 250–256CrossRefGoogle Scholar
  42. 42.
    Li H, Guo X, Liu J, Li F. Opt Mater, 2016, 60: 404–410CrossRefGoogle Scholar
  43. 43.
    Yang R, Lian J. Forensic Sci Int, 2014, 242: 123–126CrossRefGoogle Scholar
  44. 44.
    Jang Y, Yanover D, Čapek RK, Shapiro A, Grumbach N, Kauffmann Y, Sashchiuk A, Lifshitz E. J Phys Chem Lett, 2016, 7: 2602–2609CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Key Laboratory of Crime Scene EvidenceShanghai Research Institute of Criminal Science and TechnologyShanghaiChina

Personalised recommendations