Achieving over 16% efficiency for single-junction organic solar cells

  • Baobing Fan
  • Difei Zhang
  • Meijing Li
  • Wenkai Zhong
  • Zhaomiyi Zeng
  • Lei YingEmail author
  • Fei HuangEmail author
  • Yong Cao


To achieve high photovoltaic performance of bulk hetero-junction organic solar cells (OSCs), a range of critical factors including absorption profiles, energy level alignment, charge carrier mobility and miscibility of donor and acceptor materials should be carefully considered. For electron-donating materials, the deep highest occupied molecular orbital (HOMO) energy level that is beneficial for high open-circuit voltage is much appreciated. However, a new issue in charge transfer emerges when matching such a donor with an acceptor that has a shallower HOMO energy level. More to this point, the chemical strategies used to enhance the absorption coefficient of acceptors may lead to increased molecular crystallinity, and thus result in less controllable phase-separation of photoactive layer. Therefore, to realize balanced photovoltaic parameters, the donor-acceptor combinations should simultaneously address the absorption spectra, energy levels, and film morphologies. Here, we selected two non-fullerene acceptors, namely BTPT-4F and BTPTT-4F, to match with a wide-bandgap polymer donor P2F-EHp consisting of an imidefunctionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels. By delicately optimizing the blend film morphology, we demonstrated an unprecedented power conversion efficiency of over 16% for the device based on P2F-EHp:BTPTT-4F, suggesting the great promise of materials matching toward high-performance OSCs.


organic solar cells wide bandgap polymer non-fullerene acceptor high performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (91633301, 51521002, 21822505, 21520102006).

Supplementary material

11426_2019_9457_MOESM1_ESM.pdf (651 kb)
Supporting Information


  1. 1.
    Bazan GC. Sci China Chem, 2017, 60: 1109–1110CrossRefGoogle Scholar
  2. 2.
    Huang F. Acta Polym Sin, 2018: 1141–1143Google Scholar
  3. 3.
    Zhang K, Huang F. Cao Y. Acta Polym Sin, 2018, 1400–1414Google Scholar
  4. 4.
    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128CrossRefGoogle Scholar
  5. 5.
    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, doi: 10.1016/j.joule.2019.01.004Google Scholar
  6. 6.
    Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098CrossRefGoogle Scholar
  7. 7.
    Fan B, Du X, Liu F, Zhong W, Ying L, Xie R, Tang X, An K, Xin J, Li N, Ma W, Brabec CJ, Huang F, Cao Y. Nat Energy, 2018, 3: 1051–1058CrossRefGoogle Scholar
  8. 8.
    Kang Q, Ye L, Xu B, An C, Stuard SJ, Zhang S, Yao H, Ade H, Hou J. Joule, 2019, 3: 227–239CrossRefGoogle Scholar
  9. 9.
    Liu W, Zhang J, Zhou Z, Zhang D, Zhang Y, Xu S, Zhu X. Adv Mater, 2018, 30: 1800403CrossRefGoogle Scholar
  10. 10.
    Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005CrossRefGoogle Scholar
  11. 11.
    Xu X, Bi Z, Ma W, Wang Z, Choy WCH, Wu W, Zhang G, Li Y, Peng Q. Adv Mater, 2017, 29: 1704271CrossRefGoogle Scholar
  12. 12.
    Ma X, Gao W, Yu J, An Q, Zhang M, Hu Z, Wang J, Tang W, Yang C, Zhang F. Energy Environ Sci, 2018, 11: 2134–2141CrossRefGoogle Scholar
  13. 13.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  14. 14.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  15. 15.
    Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell TP, Ding L. Sci Bull, 2017, 62: 1494–1496CrossRefGoogle Scholar
  16. 16.
    Dai S, Li T, Wang W, Xiao Y, Lau TK, Li Z, Liu K, Lu X, Zhan X. Adv Mater, 2018, 30: 1706571CrossRefGoogle Scholar
  17. 17.
    Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045–3049CrossRefGoogle Scholar
  18. 18.
    Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582CrossRefGoogle Scholar
  19. 19.
    Feng L, Yuan J, Zhang Z, Peng H, Zhang ZG, Xu S, Liu Y, Li Y, Zou Y. ACS Appl Mater Interfaces, 2017, 9: 31985–31992CrossRefGoogle Scholar
  20. 20.
    Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570CrossRefGoogle Scholar
  21. 21.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  22. 22.
    Shi X, Liao X, Gao K, Zuo L, Chen J, Zhao J, Liu F, Chen Y, Jen AKY. Adv Funct Mater, 2018, 28: 1802324CrossRefGoogle Scholar
  23. 23.
    Lan L, Chen Z, Hu Q, Ying L, Zhu R, Liu F, Russell TP, Huang F, Cao Y. Adv Sci, 2016, 3: 1600032CrossRefGoogle Scholar
  24. 24.
    Fan B, Zhang K, Jiang XF, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29: 1606396CrossRefGoogle Scholar
  25. 25.
    Zheng N, Mahmood K, Zhong W, Liu F, Zhu P, Wang Z, Xie B, Chen Z, Zhang K, Ying L, Huang F, Cao Y. Nano Energy, 2019, 58: 724–731CrossRefGoogle Scholar
  26. 26.
    Fan B, Ying L, Wang Z, He B, Jiang XF, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1243–1251CrossRefGoogle Scholar
  27. 27.
    Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906CrossRefGoogle Scholar
  28. 28.
    Fan B, Zhu P, Xin J, Li N, Ying L, Zhong W, Li Z, Ma W, Huang F, Cao Y. Adv Energy Mater, 2018, 8: 1703085CrossRefGoogle Scholar
  29. 29.
    Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12: 157–163CrossRefGoogle Scholar
  30. 30.
    Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427–436CrossRefGoogle Scholar
  31. 31.
    Zhong Z, Bu L, Zhu P, Xiao T, Fan B, Ying L, Lu G, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11: 8350–8356CrossRefGoogle Scholar
  32. 32.
    Armin A, Kassal I, Shaw PE, Hambsch M, Stolterfoht M, Lyons DM, Li J, Shi Z, Burn PL, Meredith P. J Am Chem Soc, 2014, 136: 11465–11472CrossRefGoogle Scholar
  33. 33.
    Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356–3359CrossRefGoogle Scholar
  34. 34.
    Guo B, Li W, Luo G, Guo X, Yao H, Zhang M, Hou J, Li Y, Wong WY. ACS Energy Lett, 2018, 3: 2566–2572CrossRefGoogle Scholar
  35. 35.
    Li N, Perea JD, Kassar T, Richter M, Heumueller T, Matt GJ, Hou Y, Güldal NS, Chen H, Chen S, Langner S, Berlinghof M, Unruh T, Brabec CJ. Nat Commun, 2017, 8: 14541CrossRefGoogle Scholar
  36. 36.
    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Phys Rev B, 2010, 81: 125204CrossRefGoogle Scholar
  37. 37.
    Ndjawa GON, Graham KR, Mollinger S, Wu DM, Hanifi D, Prasanna R, Rose BD, Dey S, Yu L, Brédas JL, McGehee MD, Salleo A, Amassian A. Adv Energy Mater, 2017, 7: 1601995CrossRefGoogle Scholar
  38. 38.
    Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118CrossRefGoogle Scholar
  39. 39.
    Etzold F, Howard IA, Mauer R, Meister M, Kim TD, Lee KS, Baek NS, Laquai F. J Am Chem Soc, 2011, 133: 9469–9479CrossRefGoogle Scholar
  40. 40.
    Koster LJA, Mihailetchi VD, Blom PWM. Appl Phys Lett, 2006, 88: 052104CrossRefGoogle Scholar
  41. 41.
    Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. Adv Mater, 2010, 22: E135–E138Google Scholar
  42. 42.
    Credgington D, Jamieson FC, Walker B, Nguyen TQ, Durrant JR. Adv Mater, 2012, 24: 2135–2141CrossRefGoogle Scholar
  43. 43.
    Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020CrossRefGoogle Scholar
  44. 44.
    Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Baobing Fan
    • 1
  • Difei Zhang
    • 1
  • Meijing Li
    • 1
  • Wenkai Zhong
    • 1
  • Zhaomiyi Zeng
    • 1
  • Lei Ying
    • 1
    Email author
  • Fei Huang
    • 1
    Email author
  • Yong Cao
    • 1
  1. 1.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina

Personalised recommendations