Advertisement

Phenanthrene derivatives combined charge transport properties and strong solid-state emission

  • Jinfeng Li
  • Chenguang Li
  • Lingjie Sun
  • Xiaotao ZhangEmail author
  • Shanshan ChengEmail author
  • Wenping Hu
Articles
  • 10 Downloads

Abstract

As bifunctional materials, phenanthrene derivatives 2,7-diphenylphenanthrene and 2,7-di(styryl)phenanthrene (DPPa and DSPa) were designed and studied. Both materials show charge transport properties and strong solid-state emission. The hole mobility was measured to be 1.6 and 0.4 cm2 V−1 s−1 for DPPa and DSPa, respectively. While the photoluminescence quantum yield of DPPa and DSPa was as high as 37.13% and 62.36%, respectively.

Keywords

phenanthrene derivatives OFET strong solid-state emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program (2017YFA0204503, 2016YFB0401100), the National Natural Science Foundation of China (51703159, 51633006, 51733004), and the Strategic Priority Research Program (XDB12030300) of the Chinese Academy of Science.

Supplementary material

11426_2019_9451_MOESM1_ESM.cif (361 kb)
Supplementary material, approximately 361 KB.
11426_2019_9451_MOESM2_ESM.cif (476 kb)
Supplementary material, approximately 475 KB.
11426_2019_9451_MOESM3_ESM.pdf (746 kb)
Phenanthrene derivatives combined charge transport properties and strong solid-state emission

References

  1. 1.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267CrossRefGoogle Scholar
  2. 2.
    Wen Y, Liu Y, Guo Y, Yu G, Hu W. Chem Rev, 2011, 111: 3358–3406CrossRefGoogle Scholar
  3. 3.
    Zaumseil J, Sirringhaus H. Chem Rev, 2007, 107: 1296–1323CrossRefGoogle Scholar
  4. 4.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem Rev, 2007, 107: 926–952CrossRefGoogle Scholar
  5. 5.
    Murphy AR, Fréchet JMJ. Chem Rev, 2007, 107: 1066–1096CrossRefGoogle Scholar
  6. 6.
    Li J, Zheng L, Sun L, Li C, Zhang X, Cheng S, Hu W. J Mater Chem C, 2018, 6: 13257–13260CrossRefGoogle Scholar
  7. 7.
    Li J, Zhou K, Liu J, Zhen Y, Liu L, Zhang J, Dong H, Zhang X, Jiang L, Hu W. J Am Chem Soc, 2017, 139: 17261–17264CrossRefGoogle Scholar
  8. 8.
    Muccini M. Nat Mater, 2006, 5: 605–613CrossRefGoogle Scholar
  9. 9.
    Melucci M, Favaretto L, Zambianchi M, Durso M, Gazzano M, Zanelli A, Monari M, Lobello MG, De Angelis F, Biondo V, Generali G, Troisi S, Koopman W, Toffanin S, Capelli R, Muccini M. Chem Mater, 2013, 25: 668–676CrossRefGoogle Scholar
  10. 10.
    Zhang X, Dong H, Hu W. Adv Mater, 2018, 30: 1801048CrossRefGoogle Scholar
  11. 11.
    Bisri SZ, Takenobu T, Iwasa Y. J Mater Chem C, 2014, 2: 2827–2836CrossRefGoogle Scholar
  12. 12.
    Schidleja M, Melzer C, von Seggern H. Adv Mater, 2009, 21: 1172–1176CrossRefGoogle Scholar
  13. 13.
    Jenekhe SA. Nat Mater, 2008, 7: 354–355CrossRefGoogle Scholar
  14. 14.
    Tessler N. Adv Mater, 1999, 11: 363–370CrossRefGoogle Scholar
  15. 15.
    Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger AJ. Nat Commun, 2015, 6: 10032CrossRefGoogle Scholar
  16. 16.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ. Chem Rev, 2005, 105: 1491–1546CrossRefGoogle Scholar
  17. 17.
    Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339–1386CrossRefGoogle Scholar
  18. 18.
    Liu Z, Zhang G, Zhang D. Chem Eur J, 2016, 22: 462–471CrossRefGoogle Scholar
  19. 19.
    Aleshin AN, Lee JY, Chu SW, Kim JS, Park YW. Appl Phys Lett, 2004, 84: 5383–5385CrossRefGoogle Scholar
  20. 20.
    Katoh R, Suzuki K, Furube A, Kotani M, Tokumaru K. J Phys Chem C, 2009, 113: 2961–2965CrossRefGoogle Scholar
  21. 21.
    Komori T, Nakanotani H, Yasuda T, Adachi C. J Mater Chem C, 2014, 2: 4918–4921CrossRefGoogle Scholar
  22. 22.
    Smits ECP, Mathijssen SGJ, van Hal PA, Setayesh S, Geuns TCT, Mutsaers KAHA, Cantatore E, Wondergem HJ, Werzer O, Resel R, Kemerink M, Kirchmeyer S, Muzafarov AM, Ponomarenko SA, de Boer B, Blom PWM, de Leeuw DM. Nature, 2008, 455: 956–959CrossRefGoogle Scholar
  23. 23.
    Dinelli F, Murgia M, Levy P, Cavallini M, Biscarini F, de Leeuw DM. Phys Rev Lett, 2004, 92: 116802CrossRefGoogle Scholar
  24. 24.
    Ruiz R, Papadimitratos A, Mayer AC, Malliaras GG. Adv Mater, 2005, 17: 1795–1798CrossRefGoogle Scholar
  25. 25.
    Huang J, Sun J, Katz HE. Adv Mater, 2008, 20: 2567–2572CrossRefGoogle Scholar
  26. 26.
    Shi Y, Jiang L, Liu J, Tu Z, Hu Y, Wu Q, Yi Y, Gann E, McNeill CR, Li H, Hu W, Zhu D, Sirringhaus H. Nat Commun, 2018, 9: 2933CrossRefGoogle Scholar
  27. 27.
    Jiang H, Kloc C. MRS Bull, 2013, 38: 28–33CrossRefGoogle Scholar
  28. 28.
    Tang Q, Jiang L, Tong Y, Li H, Liu Y, Wang Z, Hu W, Liu Y, Zhu D. Adv Mater, 2008, 20: 2947–2951CrossRefGoogle Scholar
  29. 29.
    Sun Y, Liu Y, Zhu D. J Mater Chem, 2005, 15: 53–65CrossRefGoogle Scholar
  30. 30.
    Spano FC. Acc Chem Res, 2009, 43: 429–439CrossRefGoogle Scholar
  31. 31.
    Cornil J, Calbert JP, Brédas JL. J Am Chem Soc, 2001, 123: 1250–1251CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of ScienceTianjin University & Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations