Carbon dots prepared for fluorescence and chemiluminescence sensing

  • Meng-Li Liu
  • Bin-Bin Chen
  • Chun-Mei Li
  • Cheng-Zhi HuangEmail author


Carbon dots (CDs) have attracted considerable research interest in recent years due to their unique optical properties, chemical inertness, facile synthesis from a wide range of starting materials, and advantages over classic quantum dots and organic dyes. Various methods have been developed for preparing the CDs, including chemical oxidation, hydro/solvothermal method, electrochemical method, microwave-assisted synthesis, and direct carbonization method. Importantly, the superior electronic properties of CDs including efficient light harvesting and prominent photoinduced electron transfer have aroused considerable attention in fluorescence (FL) and chemiluminescence (CL) sensing field. In this review, we aim to demonstrate the recent progress of CDs in the synthesis, FL and CL sensing applications. This review gives new insights into how to use different synthetic methods to tune the structure of the CDs, with the major focus on FL and CL sensing.


carbon dots synthesis approach fluorescence sensing chemiluminescence sensing detection mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21535006), and the Fundamental Research Funds for the Central Universities (XDJK2018C088).


  1. 1.
    Cayuela A, Soriano ML, Carrillo-Carrión C, Valcárcel M. Chem Commun, 2016, 52: 1311–1326CrossRefGoogle Scholar
  2. 2.
    Wang N, Zheng AQ, Liu X, Chen JJ, Yang T, Chen ML, Wang JH. ACS Appl Mater Interfaces, 2018, 10: 7901–7909CrossRefPubMedGoogle Scholar
  3. 3.
    Feng J, Wang WJ, Hai X, Yu YL, Wang JH. J Mater Chem B, 2016, 4: 387–393CrossRefGoogle Scholar
  4. 4.
    Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ. J Mater Chem B, 2013, 1: 2868–2873CrossRefGoogle Scholar
  5. 5.
    Chen BB, Liu ML, Zhan L, Li CM, Huang CZ. Anal Chem, 2018, 90: 4003–4009CrossRefPubMedGoogle Scholar
  6. 6.
    Chen BB, Li RS, Liu LM, Zou HY, Liu H, Huang CZ. Talanta, 2018, 178: 172–177CrossRefPubMedGoogle Scholar
  7. 7.
    Liu ML, Chen BB, He JH, Li CM, Li YF, Huang CZ. Talanta, 2019, 191: 443–448CrossRefPubMedGoogle Scholar
  8. 8.
    Li RS, Gao PF, Zhang HZ, Zheng LL, Li CM, Wang J, Li YF, Liu F, Li N, Huang CZ. Chem Sci, 2017, 8: 6829–6835CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang QQ, Yang T, Li RS, Zou HY, Li YF, Guo J, Liu XD, Huang CZ. Nanoscale, 2018, 10: 14705–14711CrossRefPubMedGoogle Scholar
  10. 10.
    Liu JH, Li RS, Yuan B, Wang J, Li YF, Huang CZ. Nanoscale, 2018, 10: 17402–17408CrossRefPubMedGoogle Scholar
  11. 11.
    Kang EB, Lee JE, Mazrad ZAI, In I, Jeong JH, Park SY. Nanoscale, 2018, 10: 2512–2523CrossRefPubMedGoogle Scholar
  12. 12.
    Guo M, Xiang HJ, Wang Y, Zhang QL, An L, Yang SP, Ma Y, Wang Y, Liu JG. Chem Commun, 2017, 53: 3253–3256CrossRefGoogle Scholar
  13. 13.
    Zhang DY, Zheng Y, Zhang H, He L, Tan CP, Sun JH, Zhang W, Peng X, Zhan Q, Ji LN, Mao ZW. Nanoscale, 2017, 9: 18966–18976CrossRefPubMedGoogle Scholar
  14. 14.
    Yang D, Yang G, Sun Q, Gai S, He F, Dai Y, Zhong C, Yang P. Adv Healthcare Mater, 2018, 7: 1800042CrossRefGoogle Scholar
  15. 15.
    Liu ZX, Chen BB, Liu ML, Zou HY, Huang CZ. Green Chem, 2017, 19: 1494–1498CrossRefGoogle Scholar
  16. 16.
    Lin Z, Dou X, Li H, Ma Y, Lin JM. Talanta, 2015, 132: 457–462CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou Y, Xing G, Chen H, Ogawa N, Lin JM. Talanta, 2012, 99: 471–477CrossRefPubMedGoogle Scholar
  18. 18.
    Devadas B, Imae T. ACS Sustain Chem Eng, 2018, 6: 127–134CrossRefGoogle Scholar
  19. 19.
    Wang Z, Yuan F, Li X, Li Y, Zhong H, Fan L, Yang S. Adv Mater, 2017, 29: 1702910CrossRefGoogle Scholar
  20. 20.
    Essner JB, Baker GA. Environ Sci-Nano, 2017, 4: 1216–1263CrossRefGoogle Scholar
  21. 21.
    Liu H, Ye T, Mao C. Angew Chem Int Ed, 2007, 46: 6473–6475CrossRefGoogle Scholar
  22. 22.
    Liu ML, Chen BB, Liu ZX, Huang CZ. Talanta, 2016, 161: 875–880CrossRefPubMedGoogle Scholar
  23. 23.
    Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y, Yao S. Chem Commun, 2015, 51: 7164–7167CrossRefGoogle Scholar
  24. 24.
    Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, Tan L, Xie Q, Zhang Y, Yao S. Chem Eur J, 2014, 20: 4993–4999CrossRefPubMedGoogle Scholar
  25. 25.
    Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ. Adv Funct Mater, 2012, 22: 2971–2979CrossRefGoogle Scholar
  26. 26.
    Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Small, 2015, 11: 1620–1636CrossRefPubMedGoogle Scholar
  27. 27.
    Wang DM, Lin KL, Huang CZ. Luminescence, 2019, 34: 4–22CrossRefPubMedGoogle Scholar
  28. 28.
    Zheng Y, Dou X, Li H, Lin JM. Nanoscale, 2016, 8: 4933–4937CrossRefPubMedGoogle Scholar
  29. 29.
    Liu H, Li Z, Sun Y, Geng X, Hu Y, Meng H, Ge J, Qu L. Sci Rep, 2018, 8: 1086–1091CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shah SNA, Lin JM. Adv Colloid Interface Sci, 2017, 241: 24–36CrossRefPubMedGoogle Scholar
  31. 31.
    Peng H, Travas-Sejdic J. Chem Mater, 2009, 21: 5563–5565CrossRefGoogle Scholar
  32. 32.
    Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Chem Mater, 2009, 21: 2803–2809CrossRefGoogle Scholar
  33. 33.
    Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q. Chem Commun, 2010, 46: 8812–8814CrossRefGoogle Scholar
  34. 34.
    Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B. Adv Funct Mater, 2012, 22: 4732–4740CrossRefGoogle Scholar
  35. 35.
    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM. Nano Lett, 2012, 12: 844–849CrossRefPubMedGoogle Scholar
  36. 36.
    Liu ML, Chen BB, Li CM, Huang CZ. Green Chem, 2019, 21: 449–471CrossRefGoogle Scholar
  37. 37.
    Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z. Sci Rep, 2014, 4: 5294CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhao P, Li X, Baryshnikov G, Wu B, Ågren H, Zhang J, Zhu L. Chem Sci, 2018, 9: 1323–1329CrossRefPubMedGoogle Scholar
  39. 39.
    Cheng Y, Li C, Mu R, Li Y, Xing T, Chen B, Huang C. Anal Chem, 2018, 90: 11358–11365CrossRefPubMedGoogle Scholar
  40. 40.
    Qi BP, Bao L, Zhang ZL, Pang DW. ACS Appl Mater Interfaces, 2016, 8: 28372–28382CrossRefPubMedGoogle Scholar
  41. 41.
    Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang C, Yang X, Lee ST. Angew Chem, 2010, 122: 4532–4536CrossRefGoogle Scholar
  42. 42.
    Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z. J Am Chem Soc, 2007, 129: 744–745CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Chem Commun, 2008, 281: 5116–5118CrossRefGoogle Scholar
  44. 44.
    Liu M, Xu Y, Niu F, Gooding JJ, Liu J. Analyst, 2016, 141: 2657–2664CrossRefPubMedGoogle Scholar
  45. 45.
    Wang CI, Wu WC, Periasamy AP, Chang HT. Green Chem, 2014, 16: 2509–2514CrossRefGoogle Scholar
  46. 46.
    Hou Y, Lu Q, Deng J, Li H, Zhang Y. Anal Chim Acta, 2015, 866: 69–74CrossRefPubMedGoogle Scholar
  47. 47.
    Niu F, Ying YL, Hua X, Niu Y, Xu Y, Long YT. Carbon, 2018, 127: 340–348CrossRefGoogle Scholar
  48. 48.
    Lin Z, Xue W, Chen H, Lin JM. Chem Commun, 2012, 48: 1051–1053CrossRefGoogle Scholar
  49. 49.
    Zheng J, Wang Y, Zhang F, Yang Y, Liu X, Guo K, Wang H, Xu B. J Mater Chem C, 2017, 5: 8105–8111CrossRefGoogle Scholar
  50. 50.
    Pham-Truong TN, Petenzi T, Ranjan C, Randriamahazaka H, Ghilane J. Carbon, 2018, 130: 544–552CrossRefGoogle Scholar
  51. 51.
    Yuan YH, Li RS, Wang Q, Wu ZL, Wang J, Liu H, Huang CZ. Nanoscale, 2015, 7: 16841–16847CrossRefPubMedGoogle Scholar
  52. 52.
    Chen BB, Liu ZX, Zou HY, Huang CZ. Analyst, 2016, 141: 2676–2681CrossRefPubMedGoogle Scholar
  53. 53.
    Liu ML, Chen BB, Yang T, Wang J, Liu XD, Huang CZ. Methods Appl Fluoresc, 2017, 5: 015003CrossRefGoogle Scholar
  54. 54.
    Baptista FR, Belhout SA, Giordani S, Quinn SJ. Chem Soc Rev, 2015, 44: 4433–4453CrossRefPubMedGoogle Scholar
  55. 55.
    Ding C, Zhu A, Tian Y. Acc Chem Res, 2014, 47: 20–30CrossRefPubMedGoogle Scholar
  56. 56.
    Ying Y, Peng X. Analyst, 2016, 141: 2619–2628CrossRefGoogle Scholar
  57. 57.
    Yang W, Ni J, Luo F, Weng W, Wei Q, Lin Z, Chen G. Anal Chem, 2017, 89: 8384–8390CrossRefPubMedGoogle Scholar
  58. 58.
    Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y. Anal Chem, 2018, 90: 2618–2624CrossRefPubMedGoogle Scholar
  59. 59.
    Kudr J, Richtera L, Xhaxhiu K, Hynek D, Heger Z, Zitka O, Adam V. Biosens Bioelectron, 2017, 92: 133–139CrossRefPubMedGoogle Scholar
  60. 60.
    Li G, Kong W, Zhao M, Lu S, Gong P, Chen G, Xia L, Wang H, You J, Wu Y. Biosens Bioelectron, 2016, 79: 728–735CrossRefPubMedGoogle Scholar
  61. 61.
    Yang D, Guan S, Niu Y, Xie Z, Zhou S, Qu X. J Mater Chem B, 2018, 6: 2315–2322CrossRefGoogle Scholar
  62. 62.
    Hou J, Tian Z, Xie H, Tian Q, Ai S. Sensor Actuat B-Chem, 2016, 232: 477–483CrossRefGoogle Scholar
  63. 63.
    Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z. ACS Appl Mater Interfaces, 2013, 5: 13242–13247CrossRefPubMedGoogle Scholar
  64. 64.
    Li G, Fu H, Chen X, Gong P, Chen G, Xia L, Wang H, You J, Wu Y. Anal Chem, 2016, 88: 2720–2726CrossRefPubMedGoogle Scholar
  65. 65.
    Zhao D, Chen C, Sun J, Yang X. Analyst, 2016, 141: 3280–3288CrossRefPubMedGoogle Scholar
  66. 66.
    Lin M, Zou HY, Yang T, Liu ZX, Liu H, Huang CZ. Nanoscale, 2016, 8: 2999–3007CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang QQ, Chen BB, Zou HY, Li YF, Huang CZ. Biosens Bioe-lectron, 2018, 100: 148–154CrossRefGoogle Scholar
  68. 68.
    Kong W, Wu D, Xia L, Chen X, Li G, Qiu N, Chen G, Sun Z, You J, Wu Y. Anal Chim Acta, 2017, 973: 91–99CrossRefPubMedGoogle Scholar
  69. 69.
    Wang J, Sheng Li R, Zhi Zhang H, Wang N, Zhang Z, Huang CZ. Biosens Bioelectron, 2017, 97: 157–163CrossRefPubMedGoogle Scholar
  70. 70.
    Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim JJ, Lee YR. Sensor Actuat B-Chem, 2017, 246: 497–509CrossRefGoogle Scholar
  71. 71.
    Liu W, Diao H, Chang H, Wang H, Li T, Wei W. Sensor Actuat B-Chem, 2017, 241: 190–198CrossRefGoogle Scholar
  72. 72.
    Liao J, Cheng Z, Zhou L. ACS Sustain Chem Eng, 2016, 4: 3053–3061CrossRefGoogle Scholar
  73. 73.
    Chen BB, Li RS, Liu ML, Zhang HZ, Huang CZ. Chem Commun, 2017, 53: 4958–4961CrossRefGoogle Scholar
  74. 74.
    Gao MX, Liu CF, Wu ZL, Zeng QL, Yang XX, Wu WB, Li YF, Huang CZ. Chem Commun, 2013, 49: 8015–8017CrossRefGoogle Scholar
  75. 75.
    Liu ZX, Wu ZL, Gao MX, Liu H, Huang CZ. Chem Commun, 2016, 52: 2063–2066CrossRefGoogle Scholar
  76. 76.
    Wang N, Liu ZX, Li RS, Zhang HZ, Huang CZ, Wang J. J Mater Chem B, 2017, 5: 6394–6399CrossRefGoogle Scholar
  77. 77.
    Jiang BP, Yu YX, Guo XL, Ding ZY, Zhou B, Liang H, Shen XC. Carbon, 2018, 128: 12–20CrossRefGoogle Scholar
  78. 78.
    Li N, Than A, Wang X, Xu S, Sun L, Duan H, Xu C, Chen P. ACS Nano, 2016, 10: 3622–3629CrossRefPubMedGoogle Scholar
  79. 79.
    Li Y, Lin H, Luo C, Wang Y, Jiang C, Qi R, Huang R, Travas-sejdic J, Peng H. RSC Adv, 2017, 7: 32225–32228CrossRefGoogle Scholar
  80. 80.
    Chen TH, Tseng WL. Anal Chem, 2017, 89: 11348–11356CrossRefPubMedGoogle Scholar
  81. 81.
    Shangguan J, Huang J, He D, He X, Wang K, Ye R, Yang X, Qing T, Tang J. Anal Chem, 2017, 89: 7477–7484CrossRefPubMedGoogle Scholar
  82. 82.
    Zhu X, Zhang Z, Xue Z, Huang C, Shan Y, Liu C, Qin X, Yang W, Chen X, Wang T. Anal Chem, 2017, 89: 12054–12058CrossRefPubMedGoogle Scholar
  83. 83.
    Kong W, Wu D, Li G, Chen X, Gong P, Sun Z, Chen G, Xia L, You J, Wu Y. Talanta, 2017, 165: 677–684CrossRefPubMedGoogle Scholar
  84. 84.
    Lu X, Zhang J, Xie YN, Zhang X, Jiang X, Hou X, Wu P. Anal Chem, 2018, 90: 2939–2945CrossRefPubMedGoogle Scholar
  85. 85.
    Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q. Coord Chem Rev, 2019, 383: 82–103CrossRefGoogle Scholar
  86. 86.
    Yuan YH, Liu ZX, Li RS, Zou HY, Lin M, Liu H, Huang CZ. Nanoscale, 2016, 8: 6770–6776CrossRefPubMedGoogle Scholar
  87. 87.
    He JH, Cheng YY, Yang T, Zou HY, Huang CZ. Anal Chim Acta, 2018, 1035: 203–210CrossRefPubMedGoogle Scholar
  88. 88.
    Zhang Y, Wang Y, Guan Y, Feng L. Nanoscale, 2015, 7: 6348–6355CrossRefPubMedGoogle Scholar
  89. 89.
    Kang X, Wang S, Zhu M. Chem Sci, 2018, 9: 3062–3068CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Dong J, Li X, Zhang K, Di Yuan Y, Wang Y, Zhai L, Liu G, Yuan D, Jiang J, Zhao D. J Am Chem Soc, 2018, 140: 4035–4046CrossRefPubMedGoogle Scholar
  91. 91.
    Zhao Z, He B, Tang BZ. Chem Sci, 2015, 6: 5347–5365CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Qin W, Zhang P, Li H, Lam JWY, Cai Y, Kwok RTK, Qian J, Zheng W, Tang BZ. Chem Sci, 2018, 9: 2705–2710CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kawamura Y, Brooks J, Brown JJ, Sasabe H, Adachi C. Phys Rev Lett, 2006, 96: 017404CrossRefPubMedGoogle Scholar
  94. 94.
    Tai K, Lü W, Umezu I, Sugimura A. Appl Phys Express, 2010, 3: 035202CrossRefGoogle Scholar
  95. 95.
    Chen S, Liu JW, Chen ML, Chen XW, Wang JH. Chem Commun, 2012, 48: 7637–7639CrossRefGoogle Scholar
  96. 96.
    Malic E, Appel H, Hofmann OT, Rubio A. J Phys Chem C, 2014, 118: 9283–9289CrossRefGoogle Scholar
  97. 97.
    Gaudreau L, Tielrooij KJ, Prawiroatmodjo GEDK, Osmond J, García de Abajo FJ, Koppens FHL. Nano Lett, 2013, 13: 2030–2035CrossRefPubMedGoogle Scholar
  98. 98.
    Gómez-Santos G, Stauber T. Phys Rev B, 2011, 84: 165438CrossRefGoogle Scholar
  99. 99.
    Liu H, Zhang Y, Liu JH, Hou P, Zhou J, Huang CZ. RSC Adv, 2017, 7: 50584–50590CrossRefGoogle Scholar
  100. 100.
    Chen BB, Liu ZX, Deng WC, Zhan L, Liu ML, Huang CZ. Green Chem, 2016, 18: 5127–5132CrossRefGoogle Scholar
  101. 101.
    Lin Z, Xue W, Chen H, Lin JM. Anal Chem, 2011, 83: 8245–8251CrossRefPubMedGoogle Scholar
  102. 102.
    Dong S, Yuan Z, Zhang L, Lin Y, Lu C. Anal Chem, 2017, 89: 12520–12526CrossRefPubMedGoogle Scholar
  103. 103.
    Zhou W, Dong S, Lin Y, Lu C. Chem Commun, 2017, 53: 2122–2125CrossRefGoogle Scholar
  104. 104.
    Dong Y, Su M, Chen P, Sun H. Microchim Acta, 2015, 182: 1071–1077CrossRefGoogle Scholar
  105. 105.
    Li L, Lai X, Xu X, Li J, Yuan P, Feng J, Wei L, Cheng X. Microchim Acta, 2018, 185: 136–143CrossRefGoogle Scholar
  106. 106.
    Zhao L, Di F, Wang D, Guo LH, Yang Y, Wan B, Zhang H. Na-noscale, 2013, 5: 2655–2658Google Scholar
  107. 107.
    Zhao L, Geng F, Di F, Guo LH, Wan B, Yang Y, Zhang H, Sun G. RSC Adv, 2014, 4: 45768–45771CrossRefGoogle Scholar
  108. 108.
    Shah SNA, Dou X, Khan M, Uchiyama K, Lin JM. Talanta, 2019, 196: 370–375CrossRefPubMedGoogle Scholar
  109. 109.
    Liu Y, Han S. Food Anal Methods, 2017, 10: 3398–3406CrossRefGoogle Scholar
  110. 110.
    Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH. Spectrochim Acta Part A-Mol Biomol Spectr, 2014, 122: 715–720CrossRefGoogle Scholar
  111. 111.
    Yan Z, Yu Y, Chen J. Anal Methods, 2015, 7: 1133–1139CrossRefGoogle Scholar
  112. 112.
    Shi J, Lu C, Yan D, Ma L. Biosens Bioelectron, 2013, 45: 58–64CrossRefPubMedGoogle Scholar
  113. 113.
    Guo Y, Li B. Carbon, 2015, 82: 459–469CrossRefGoogle Scholar
  114. 114.
    Dou X, Zheng Y, Uchiyama K, Lin JM. Chem Commun, 2016, 52: 14137–14140CrossRefGoogle Scholar
  115. 115.
    Zheng Y, Zhang D, Shah SNA, Li H, Lin JM. Chem Commun, 2017, 53: 5657–5660CrossRefGoogle Scholar
  116. 116.
    Amjadi M, Hallaj T. J Lumin, 2016, 171: 202–207CrossRefGoogle Scholar
  117. 117.
    Amjadi M, Manzoori JL, Hallaj T. J Lumin, 2015, 158: 160–164CrossRefGoogle Scholar
  118. 118.
    Chen J, Shu J, Chen J, Cao Z, Xiao A, Yan Z. Luminescence, 2017, 32: 277–284CrossRefPubMedGoogle Scholar
  119. 119.
    Amjadi M, Manzoori JL, Hallaj T, Shahbazsaghir T. Microchim Acta, 2017, 184: 1587–1593CrossRefGoogle Scholar
  120. 120.
    Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH. Microchim Acta, 2014, 181: 671–677CrossRefGoogle Scholar
  121. 121.
    Shah SNA, Lin L, Zheng Y, Zhang D, Lin JM. Phys Chem Chem Phys, 2017, 19: 21604–21611CrossRefPubMedGoogle Scholar
  122. 122.
    Shah SNA, Li H, Lin JM. Talanta, 2016, 153: 23–30CrossRefPubMedGoogle Scholar
  123. 123.
    Liu Y, Han S. New J Chem, 2018, 42: 388–394CrossRefGoogle Scholar
  124. 124.
    Xiong C, Liang W, Wang H, Zheng Y, Zhuo Y, Chai Y, Yuan R. Chem Commun, 2016, 52: 5589–5592CrossRefGoogle Scholar
  125. 125.
    Su M, Liu H, Ge L, Wang Y, Ge S, Yu J, Yan M. Electrochim Acta, 2014, 146: 262–269CrossRefGoogle Scholar
  126. 126.
    Dong YP, Peng Y, Wang J, Wang CM. Microchim Acta, 2017, 184: 2089–2095CrossRefGoogle Scholar
  127. 127.
    Wu L, Li M, Zhang M, Yan M, Ge S, Yu J. Sensor Actuat B-Chem, 2013, 186: 761–767CrossRefGoogle Scholar
  128. 128.
    Zhou J, Han T, Ma H, Yan T, Pang X, Li Y, Wei Q. Anal Chim Acta, 2015, 889: 82–89CrossRefPubMedGoogle Scholar
  129. 129.
    Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G. Chem Mater, 2010, 22: 5895–5899CrossRefGoogle Scholar
  130. 130.
    Bao L, Liu C, Zhang ZL, Pang DW. Adv Mater, 2015, 27: 1663–1667CrossRefPubMedGoogle Scholar
  131. 131.
    Zheng L, Chi Y, Dong Y, Lin J, Wang B. J Am Chem Soc, 2009, 131: 4564–4565CrossRefPubMedGoogle Scholar
  132. 132.
    Long YM, Bao L, Peng Y, Zhang ZL, Pang DW. Carbon, 2018, 129: 168–174CrossRefGoogle Scholar
  133. 133.
    You X, Lin W, Wu H, Dong Y, Chi Y. Carbon, 2018, 127: 653–657CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Meng-Li Liu
    • 1
  • Bin-Bin Chen
    • 1
  • Chun-Mei Li
    • 2
  • Cheng-Zhi Huang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical ScienceSouthwest UniversityChongqingChina

Personalised recommendations