Advertisement

Stability improvement under high efficiency—next stage development of perovskite solar cells

  • Danni Yu
  • Yue Hu
  • Jiangjian Shi
  • Haoying Tang
  • Wenhao Zhang
  • Qingbo MengEmail author
  • Hongwei HanEmail author
  • Zhijun NingEmail author
  • He Tian
Invited Reviews

Abstract

With efficiency of perovskite solar cells (PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites, including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes are investigated. To compare the stability of PSCs and clarify the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs. In this review, we summarize the state-of-the-art progress on the improvement of device stability and discuss the directions for future research, hoping it provides an overview of the current status of the research on the stability of PSCs and guidelines for future research.

Keywords

stability perovskite solar cell photoelectric device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235CrossRefPubMedGoogle Scholar
  2. 2.
    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J. J Semicond, 2017, 38: 011002CrossRefGoogle Scholar
  3. 3.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982–988CrossRefGoogle Scholar
  4. 4.
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476–480CrossRefPubMedGoogle Scholar
  5. 5.
    Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278–1284CrossRefGoogle Scholar
  6. 6.
    Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy Environ Sci, 2016, 9: 1989–1997CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206–209CrossRefPubMedGoogle Scholar
  8. 8.
    Duong T, Wu YL, Shen H, Peng J, Zhao S, Wu N, Lockrey M, White T, Weber K, Catchpole K. Sol Energy Mater Sol Cells, 2018, 188: 27–36CrossRefGoogle Scholar
  9. 9.
    Turren-Cruz SH, Hagfeldt A, Saliba M. Science, 2018, 362: 449–453CrossRefPubMedGoogle Scholar
  10. 10.
    Jodlowski AD, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin MK. Nat Energy, 2017, 2: 972–979CrossRefGoogle Scholar
  11. 11.
    Shi Z, Zhang Y, Cui C, Li B, Zhou W, Ning Z, Mi Q. Adv Mater, 2017, 29: 1701656CrossRefGoogle Scholar
  12. 12.
    Saidaminov MI, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent EH. Nat Energy, 2018, 3: 648–654CrossRefGoogle Scholar
  13. 13.
    Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip HL, Cao Y. Adv Mater, 2018, 30: 1802509CrossRefGoogle Scholar
  14. 14.
    Zeng Z, Zhang J, Gan X, Sun H, Shang M, Hou D, Lu C, Chen R, Zhu Y, Han L. Adv Energy Mater, 2018, 8: 1801050CrossRefGoogle Scholar
  15. 15.
    Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y. Adv Mater, 2018, 30: 1800855CrossRefGoogle Scholar
  16. 16.
    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825–3828CrossRefPubMedGoogle Scholar
  17. 17.
    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191-204CrossRefGoogle Scholar
  18. 18.
    Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y. Sci Adv, 2017, 3: e1700841CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356–1368CrossRefGoogle Scholar
  20. 20.
    Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. Nat Commun, 2018, 9: 4544CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao B, Jin SF, Huang S, Liu N, Ma JY, Xue DJ, Han Q, Ding J, Ge QQ, Feng Y, Hu JS. J Am Chem Soc, 2018, 140: 11716–11725CrossRefPubMedGoogle Scholar
  22. 22.
    Ke W, Spanopoulos I, Stoumpos CC, Kanatzidis MG. Nat Commun, 2018, 9: 4785CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. J Am Chem Soc, 2015, 137: 7843–7850CrossRefPubMedGoogle Scholar
  24. 24.
    Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. Angew Chem Int Ed, 2014, 53: 11232–11235CrossRefGoogle Scholar
  25. 25.
    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693–6699CrossRefPubMedGoogle Scholar
  26. 26.
    Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536: 312–316CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu SF. Energy Environ Sci, 2017, 10: 2095–2102CrossRefGoogle Scholar
  28. 28.
    Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135CrossRefGoogle Scholar
  29. 29.
    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y. J Am Chem Soc, 2018, 140: 11639–11646CrossRefPubMedGoogle Scholar
  30. 30.
    Shao S, Liu J, Portale G, Fang HH, Blake GR, ten Brink GH, Koster LJA, Loi MA. Adv Energy Mater, 2018, 8: 1702019CrossRefGoogle Scholar
  31. 31.
    Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y, Yang S. Adv Energy Mater, 2017, 7: 1701038CrossRefGoogle Scholar
  32. 32.
    Cho KT, Grancini G, Lee Y, Oveisi E, Ryu J, Almora O, Tschumi M, Schouwink PA, Seo G, Heo S, Park J, Jang J, Paek S, Garcia-Belmonte G, Nazeeruddin MK. Energy Environ Sci, 2018, 11: 952–959CrossRefGoogle Scholar
  33. 33.
    Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y. Joule, 2018, 2: 2065–2075CrossRefGoogle Scholar
  34. 34.
    Cho Y, Soufiani AM, Yun JS, Kim J, Lee DS, Seidel J, Deng X, Green MA, Huang S, Ho-Baillie AWY. Adv Energy Mater, 2018, 8: 1703392CrossRefGoogle Scholar
  35. 35.
    Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732–2743CrossRefGoogle Scholar
  36. 36.
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897–903CrossRefPubMedGoogle Scholar
  37. 37.
    Li X, Bi D, Yi C, Décoppet JD, Luo J, Zakeeruddin SM, Hagfeldt A, Grätzel M. Science, 2016, 353: 58–62CrossRefPubMedGoogle Scholar
  38. 38.
    Gao LL, Li CX, Li CJ, Yang GJ. J Mater Chem A, 2017, 5: 1548–1557CrossRefGoogle Scholar
  39. 39.
    Xie FX, Zhang D, Su H, Ren X, Wong KS, Grätzel M, Choy WCH. ACS Nano, 2015, 9: 639–646CrossRefPubMedGoogle Scholar
  40. 40.
    Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L. Adv Mater, 2017, 29: 1701073CrossRefGoogle Scholar
  41. 41.
    Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Adv Mater, 2014, 26: 6503–6509CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G. Angew Chem Int Ed, 2015, 54: 9705–9709CrossRefGoogle Scholar
  43. 43.
    Dong H, Wu Z, Xi J, Xu X, Zuo L, Lei T, Zhao X, Zhang L, Hou X, Jen AKY. Adv Funct Mater, 2018, 28: 1704836CrossRefGoogle Scholar
  44. 44.
    Xie F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942–1949CrossRefGoogle Scholar
  45. 45.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345: 295–298CrossRefPubMedGoogle Scholar
  46. 46.
    Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, Nazeeruddin MK, Han H, Grätzel M. Nat Chem, 2015, 7: 703–711CrossRefPubMedGoogle Scholar
  47. 47.
    Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H. Adv Mater, 2018, 30: 1705786CrossRefGoogle Scholar
  48. 48.
    Wu Z, Raga SR, Juarez-Perez EJ, Yao X, Jiang Y, Ono LK, Ning Z, Tian H, Qi Y. Adv Mater, 2018, 30: 1703670CrossRefGoogle Scholar
  49. 49.
    Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z. J Photochem Photobiol A-Chem, 2018, 355: 42–47CrossRefGoogle Scholar
  50. 50.
    Bi D, Li X, Milić JV, Kubicki DJ, Pellet N, Luo J, LaGrange T, Mettraux P, Emsley L, Zakeeruddin SM, Grätzel M. Nat Commun, 2018, 9: 4482CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zuo L, Guo H, deQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS, Dunn B, Wang M, Yang Y. Sci Adv, 2017, 3: e1700106CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zong Y, Zhou Y, Zhang Y, Li Z, Zhang L, Ju MG, Chen M, Pang S, Zeng XC, Padture NP. Chem, 2018, 4: 1404–1415CrossRefGoogle Scholar
  53. 53.
    Li X, Zhang W, Wang YC, Zhang W, Wang HQ, Fang J. Nat Commun, 2018, 9: 3806CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J. Adv Mater, 2017, 29: 1703852CrossRefGoogle Scholar
  55. 55.
    Jacobsson TJ, Correa-Baena JP, Halvani Anaraki E, Philippe B, Stranks SD, Bouduban MEF, Tress W, Schenk K, Teuscher J, Moser JE, Rensmo H, Hagfeldt A. J Am Chem Soc, 2016, 138: 10331–10343CrossRefPubMedGoogle Scholar
  56. 56.
    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ Sci, 2016, 9: 1752–1759CrossRefGoogle Scholar
  57. 57.
    Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M, Zhou H, Jin H, Li Y, Chen Q. Adv Mater, 2018, 30: 1800544CrossRefGoogle Scholar
  58. 58.
    Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell JJ, Kanjanaboos P, Sun JP, Lan X, Quan LN, Kim DH, Hill IG, Maksymovych P, Sargent EH. Nat Commun, 2015, 6: 7081CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784CrossRefPubMedGoogle Scholar
  60. 60.
    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter JM, Alsari M, Booker EP, Hutter EM, Pearson AJ, Lilliu S, Savenije TJ, Rensmo H, Divitini G, Ducati C, Friend RH, Stranks SD. Nature, 2018, 555: 497–501CrossRefPubMedGoogle Scholar
  61. 61.
    Tang Z, Bessho T, Awai F, Kinoshita T, Maitani MM, Jono R, Murakami TN, Wang H, Kubo T, Uchida S, Segawa H. Sci Rep, 2017, 7: 12183CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ. ACS Nano, 2014, 8: 9815–9821CrossRefPubMedGoogle Scholar
  63. 63.
    deQuilettes DW, Koch S, Burke S, Paranji RK, Shropshire AJ, Ziffer ME, Ginger DS. ACS Energy Lett, 2016, 1: 438–444CrossRefGoogle Scholar
  64. 64.
    Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu SF. Adv Mater, 2018, 30: 1706576CrossRefGoogle Scholar
  65. 65.
    Zhang F, Bi D, Pellet N, Xiao C, Li Z, Berry JJ, Zakeeruddin SM, Zhu K, Grätzel M. Energy Environ Sci, 2018, 11: 3480–3490CrossRefGoogle Scholar
  66. 66.
    Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726CrossRefPubMedGoogle Scholar
  67. 67.
    Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540–15547CrossRefPubMedGoogle Scholar
  68. 68.
    Calió L, Kazim S, Grätzel M, Ahmad S. Angew Chem Int Ed, 2016, 55: 14522–14545CrossRefGoogle Scholar
  69. 69.
    Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F. Nat Commun, 2016, 7: 11105CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI. Science, 2017, 356: 167–171CrossRefPubMedGoogle Scholar
  71. 71.
    Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 358: 768–771CrossRefPubMedGoogle Scholar
  72. 72.
    Yao K, Li F, He Q, Wang X, Jiang Y, Huang H, Jen AKY. Nano Energy, 2017, 40: 155–162CrossRefGoogle Scholar
  73. 73.
    Wang Z, McMeekin DP, Sakai N, van Reenen S, Wojciechowski K, Patel JB, Johnston MB, Snaith HJ. Adv Mater, 2017, 29: 1604186CrossRefGoogle Scholar
  74. 74.
    Kim GW, Kang G, Kim J, Lee GY, Kim HI, Pyeon L, Lee J, Park T. Energy Environ Sci, 2016, 9: 2326–2333CrossRefGoogle Scholar
  75. 75.
    Koushik D, Verhees WJH, Kuang Y, Veenstra S, Zhang D, Verheijen MA, Creatore M, Schropp REI. Energy Environ Sci, 2017, 10: 91–100CrossRefGoogle Scholar
  76. 76.
    Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, Neher D. Energy Environ Sci, 2017, 10: 1530–1539CrossRefGoogle Scholar
  77. 77.
    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948CrossRefPubMedGoogle Scholar
  78. 78.
    Brinkmann KO, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca MF, Luechinger NA, Rogalla D, Chen Y, Cheng B, Riedl T. Nat Commun, 2017, 8: 13938CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2016, 11: 75–81CrossRefGoogle Scholar
  80. 80.
    Li X, Tschumi M, Han H, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Nazeeruddin MK, Zakeeruddin SM, Grätzel M. Energy Tech, 2015, 3: 551–555CrossRefGoogle Scholar
  81. 81.
    Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK. Nat Commun, 2017, 8: 15684CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H. Sol RRL, 2017, 1: 1600019CrossRefGoogle Scholar
  83. 83.
    Baranwal AK, Kanaya S, Peiris TAN, Mizuta G, Nishina T, Kanda H, Miyasaka T, Segawa H, Ito S. ChemSusChem, 2016, 9: 2604–2608CrossRefPubMedGoogle Scholar
  84. 84.
    Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Nat Commun, 2013, 4: 2885CrossRefPubMedGoogle Scholar
  85. 85.
    Ito S, Tanaka S, Manabe K, Nishino H. J Phys Chem C, 2014, 118: 16995–17000CrossRefGoogle Scholar
  86. 86.
    Chander N, Khan AF, Chandrasekhar PS, Thouti E, Swami SK, Dutta V, Komarala VK. Appl Phys Lett, 2014, 105: 033904CrossRefGoogle Scholar
  87. 87.
    Bella F, Griffini G, Correa-Baena JP, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C. Science, 2016, 354: 203–206CrossRefPubMedGoogle Scholar
  88. 88.
    Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N, Sepe A, Wiesner U, Friend R, Snaith HJ, Steiner U. Adv Funct Mater, 2014, 24: 6046–6055CrossRefGoogle Scholar
  89. 89.
    Li W, Zhang W, Van Reenen S, Sutton RJ, Fan J, Haghighirad AA, Johnston MB, Wang L, Snaith HJ. Energy Environ Sci, 2016, 9: 490–498CrossRefGoogle Scholar
  90. 90.
    Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, Tremolet de Villers BJ, Sellinger A, Berry JJ, Luther JM. Nat Energy, 2018, 3: 68–74CrossRefGoogle Scholar
  91. 91.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hawash Z, Ono LK, Raga SR, Lee MV, Qi Y. Chem Mater, 2015, 27: 562–569CrossRefGoogle Scholar
  93. 93.
    Li W, Dong H, Wang L, Li N, Guo X, Li J, Qiu Y. J Mater Chem A, 2014, 2: 13587–13592CrossRefGoogle Scholar
  94. 94.
    Niu G, Guo X, Wang L. J Mater Chem A, 2015, 3: 8970–8980CrossRefGoogle Scholar
  95. 95.
    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L. Energy Environ Sci, 2014, 7: 2963–2967CrossRefGoogle Scholar
  96. 96.
    Li Z’, Zhu Z, Chueh CC, Jo SB, Luo J, Jang SH, Jen AKY. J Am Chem Soc, 2016, 138: 11833–11839CrossRefPubMedGoogle Scholar
  97. 97.
    Im K, Heo JH, Im SH, Kim J. Chem Eng J, 2017, 330: 698–705CrossRefGoogle Scholar
  98. 98.
    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y. J Mater Chem A, 2014, 2: 705–710CrossRefGoogle Scholar
  99. 99.
    Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ. J Phys Chem Lett, 2015, 6: 432–437CrossRefPubMedGoogle Scholar
  100. 100.
    Li Q, Zhao Y, Fu R, Zhou W, Zhao Y, Lin F, Liu S, Yu D, Zhao Q. J Mater Chem A, 2017, 5: 14881–14886CrossRefGoogle Scholar
  101. 101.
    Kato Y, Ono LK, Lee MV, Wang S, Raga SR, Qi Y. Adv Mater Interfaces, 2015, 2: 1500195CrossRefGoogle Scholar
  102. 102.
    Back H, Kim G, Kim J, Kong J, Kim TK, Kang H, Kim H, Lee J, Lee S, Lee K. Energy Environ Sci, 2016, 9: 1258–1263CrossRefGoogle Scholar
  103. 103.
    Domanski K, Correa-Baena JP, Mine N, Nazeeruddin MK, Abate A, Saliba M, Tress W, Hagfeldt A, Grätzel M. ACS Nano, 2016, 10: 6306–6314CrossRefPubMedGoogle Scholar
  104. 104.
    Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang JZ, Carter S. Appl Phys Lett, 2016, 109: 233905CrossRefGoogle Scholar
  105. 105.
    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant JR, Haque SA. Energy Environ Sci, 2016, 9: 1655–1660CrossRefGoogle Scholar
  106. 106.
    Huang J, Tan S, Lund PD, Zhou H. Energy Environ Sci, 2017, 10: 2284–2311CrossRefGoogle Scholar
  107. 107.
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546CrossRefPubMedGoogle Scholar
  108. 108.
    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nat Mater, 2014, 14: 193–198CrossRefPubMedGoogle Scholar
  109. 109.
    Zhao Y, Zhou W, Ma W, Meng S, Li H, Wei J, Fu R, Liu K, Yu D, Zhao Q. ACS Energy Lett, 2016, 1: 266–272CrossRefGoogle Scholar
  110. 110.
    Tsai H, Asadpour R, Blancon JC, Stoumpos CC, Durand O, Strzalka JW, Chen B, Verduzco R, Ajayan PM, Tretiak S, Even J, Alam MA, Kanatzidis MG, Nie W, Mohite AD. Science, 2018, 360: 67–70CrossRefPubMedGoogle Scholar
  111. 111.
    Zhao Y, Tan H, Yuan H, Yang Z, Fan JZ, Kim J, Voznyy O, Gong X, Quan LN, Tan CS, Hofkens J, Yu D, Zhao Q, Sargent EH. Nat Commun, 2018, 9: 1607CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Nie W, Blancon JC, Neukirch AJ, Appavoo K, Tsai H, Chhowalla M, Alam MA, Sfeir MY, Katan C, Even J, Tretiak S, Crochet JJ, Gupta G, Mohite AD. Nat Commun, 2016, 7: 11574CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Gong J, Guo P, Benjamin SE, van Patten PG, Schaller RD, Xu T. J Energy Chem, 2018, 27: 1017–1039CrossRefGoogle Scholar
  114. 114.
    Ono LK, Qi Y, Liu SF. Joule, 2018, 2: 1961–1990CrossRefGoogle Scholar
  115. 115.
    Dunbar RB, Duck BC, Moriarty T, Anderson KF, Duffy NW, Fell CJ, Kim J, Ho-Baillie A, Vak D, Duong T, Wu YL, Weber K, Pascoe A, Cheng YB, Lin Q, Burn PL, Bhattacharjee R, Wang H, Wilson GJ. J Mater Chem A, 2017, 5: 22542–22558CrossRefGoogle Scholar
  116. 116.
    Bardizza G, Pavanello D, Galleano R, Sample T, Müllejans H. Sol Energy Mater Sol Cells, 2017, 160: 418–424CrossRefGoogle Scholar
  117. 117.
    Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W. Nat Energy, 2018, 3: 61–67CrossRefGoogle Scholar
  118. 118.
    Chen B, Li T, Dong Q, Mosconi E, Song J, Chen Z, Deng Y, Liu Y, Ducharme S, Gruverman A, Angelis FD, Huang J. Nat Mater, 2018, 17: 1020–1026CrossRefPubMedGoogle Scholar
  119. 119.
    Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, Shield JE, Huang J. Sci Adv, 2017, 3: eaao5616CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ. Nat Photon, 2013, 8: 128–132CrossRefGoogle Scholar
  121. 121.
    Jung HJ, Kim D, Kim S, Park J, Dravid VP, Shin B. Adv Mater, 2018, 30: 1802769CrossRefGoogle Scholar
  122. 122.
    Ahn N, Kwak K, Jang MS, Yoon H, Lee BY, Lee JK, Pikhitsa PV, Byun J, Choi M. Nat Commun, 2016, 7: 13422CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D. Nat Commun, 2014, 5: 3461CrossRefPubMedGoogle Scholar
  124. 124.
    Klein-Kedem N, Cahen D, Hodes G. Acc Chem Res, 2016, 49: 347–354CrossRefPubMedGoogle Scholar
  125. 125.
    Lin WC, Chang HY, Abbasi K, Shyue JJ, Burda C. Adv Mater Interfaces, 2017, 4: 1600673CrossRefGoogle Scholar
  126. 126.
    Zhang H, Shi J, Zhu L, Luo Y, Li D, Wu H, Meng Q. Nano Energy, 2018, 43: 383–392CrossRefGoogle Scholar
  127. 127.
    Rocks C, Svrcek V, Velusamy T, Macias-Montero M, Maguire P, Mariotti D. Nano Energy, 2018, 50: 245–255CrossRefGoogle Scholar
  128. 128.
    Shi J, Xu X, Li D, Meng Q. Small, 2015, 11: 2472–2486CrossRefPubMedGoogle Scholar
  129. 129.
    Khadka DB, Shirai Y, Yanagida M, Miyano K. J Mater Chem C, 2018, 6: 162–170CrossRefGoogle Scholar
  130. 130.
    Heath JT, Cohen JD, Shafarman WN. J Appl Phys, 2004, 95: 1000–1010CrossRefGoogle Scholar
  131. 131.
    Walter T, Herberholz R, Müller C, Schock HW. J Appl Phys, 1996, 80: 4411–4420CrossRefGoogle Scholar
  132. 132.
    Shi J, Li D, Luo Y, Wu H, Meng Q. Rev Sci Instrum, 2016, 87: 123107CrossRefPubMedGoogle Scholar
  133. 133.
    Li Y, Li Y, Shi J, Li H, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q. Appl Phys Lett, 2018, 112: 053904CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyShanghai Tech UniversityShanghaiChina
  2. 2.Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and DevicesInstitute of Physics, Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiChina

Personalised recommendations