Science China Chemistry

, Volume 62, Issue 8, pp 1072–1081 | Cite as

Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy

  • Feng Ge
  • Jianfeng Xue
  • Zonghua WangEmail author
  • Bin XiongEmail author
  • Yan HeEmail author


The plasma membrane possesses a complicated structure, on which the protein clusters are randomly but orderly distributed to maintain the regular morphology and function of cells. Investigating the detailed dynamic behaviors of nanoparticles (NPs) on cytomembrane is of great importance to understand cellular mechanisms and advance the bio-nano technologies for drug delivery, photothermal therapy, immunotherapy, etc. In this work, to study the dynamic heterogeneous interactions between NPs and cell membrane with high resolution, we established a simple method to efficiently track the translational and rotational diffusion of individual gold nanorods (AuNRs) on cell membranes. This method is based on that an anisotropic AuNR appears as a colored spot under a darkfield microscope (DFM) equipped with a color camera. While obtaining its lateral position, the polar angle of the AuNR can be calculated simultaneously from intensity difference between the R and G channels. Careful analysis shows that the lateral motion of single AuNRs do not follow normal Brownian diffusion, which could be attributed to their hop diffusion in the dynamically varying picket-fence structure of the live cell membrane. Furthermore, 4 different rotation-translation patterns of the AuNR are observed due to spatiotemporal heterogeneity of the cytomembrane. This simple but robust method for simultaneously obtaining the location and orientation of anisotropic plasmonic nanoparticles could be further applied to the analysis of complicated biological and biomedical processes.


single particle tracking gold nanorods nanoparticle cell interaction darkfield microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21127009, 21425519, 21221003, 21475071, 21605045), the Tsinghua University Startup Fund, the Taishan Scholar Program of Shandong Province (ts201511027), and the Natural Science Foundation of Shandong (2018GGX102030).

Supplementary material

11426_2019_9444_MOESM1_ESM.pdf (539 kb)
Real-time monitoring translational and orientational heterogenicity of gold nanorods on plasma membrane with darkfield microscopy


  1. 1.
    Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Sci China Chem, 2018, 61: 1503–1552CrossRefGoogle Scholar
  2. 2.
    Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T. Seminars Immunol, 2005, 17: 3–21CrossRefGoogle Scholar
  3. 3.
    Tian FL, Yue TT, Li Y, Zhang XR. Sci China Chem, 2014, 57: 1662–1671CrossRefGoogle Scholar
  4. 4.
    Sezgin E, Levental I, Mayor S, Eggeling C. Nat Rev Mol Cell Biol, 2017, 18: 361–374CrossRefGoogle Scholar
  5. 5.
    Lingwood D, Simons K. Science, 2010, 327: 46–50CrossRefGoogle Scholar
  6. 6.
    Krapf D. Curr Opin Cell Biol, 2018, 53: 15–21CrossRefGoogle Scholar
  7. 7.
    Head BP, Patel HH, Insel PA. BioChim Biophysica Acta (BBA)-Biomembranes, 2014, 1838: 532–545CrossRefGoogle Scholar
  8. 8.
    Saxton MJ. Nat Methods, 2008, 5: 671–672CrossRefGoogle Scholar
  9. 9.
    Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Chem Rev, 2017, 117: 7331–7376CrossRefGoogle Scholar
  10. 10.
    Zhan S, Lou X, Xia F. Sci China Chem, 2017, 60: 1267–1276CrossRefGoogle Scholar
  11. 11.
    Gao Z, Deng S, Li J, Wang K, Li J, Wang L, Fan C. Sci China Chem, 2017, 60: 1305–1309CrossRefGoogle Scholar
  12. 12.
    Varshney P, Yadav V, Saini N. Immunology, 2016, 149: 13–24CrossRefGoogle Scholar
  13. 13.
    Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW. Methods, 2017, 115: 80–90CrossRefGoogle Scholar
  14. 14.
    Chen K, Gu Y, Sun W, Bin Dong W, Wang G, Fan X, Xia T, Fang N. Nat Commun, 2017, 8: 887CrossRefGoogle Scholar
  15. 15.
    Kim DH, Kim DK, Zhou K, Park S, Kwon Y, Jeong MG, Lee NK, Ryu SH. Chem Sci, 2017, 8: 4823–4832CrossRefGoogle Scholar
  16. 16.
    Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, Kim D, Song NW, Lee JB, Suh PG, Lee NK, Ryu SH. Angew Chem Int Ed, 2015, 54: 7028–7032CrossRefGoogle Scholar
  17. 17.
    Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, Bertozzi CR, Tammi MI, Lidke DS, Johnson P, Mayor S, Jaqaman K, Grinstein S. Cell, 2018, 172: 305–317.e10CrossRefGoogle Scholar
  18. 18.
    He W, Song H, Su Y, Geng L, Ackerson BJ, Peng HB, Tong P. Nat Commun, 2016, 7: 11701CrossRefGoogle Scholar
  19. 19.
    Golan Y, Sherman E. Nat Commun, 2017, 8: 15851CrossRefGoogle Scholar
  20. 20.
    Pinaud F, Clarke S, Sittner A, Dahan M. Nat Methods, 2010, 7: 275–285CrossRefGoogle Scholar
  21. 21.
    Sau TK, Rogach AL. Adv Mater, 2010, 22: 1781–1804CrossRefGoogle Scholar
  22. 22.
    Prashant K, Jain KSL, Ivan H, El-Sayed, Mostafa A, El-Sayed. J Phys Chem B, 2006, 110: 7238–7248CrossRefGoogle Scholar
  23. 23.
    Zhang M, Magagnosc DJ, Liberal I, Yu Y, Yun H, Yang H, Wu Y, Guo J, Chen W, Shin YJ, Stein A, Kikkawa JM, Engheta N, Gianola DS, Murray CB, Kagan CR. Nat Nanotech, 2017, 12: 228–232CrossRefGoogle Scholar
  24. 24.
    Peng H, Tang H, Jiang J. Sci China Chem, 2016, 59: 783–793CrossRefGoogle Scholar
  25. 25.
    Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB. Nano Lett, 2013, 13: 2163–2171CrossRefGoogle Scholar
  26. 26.
    Xiao L, Qiao YX, He Y, Yeung ES. Anal Chem, 2010, 82: 5268–5274CrossRefGoogle Scholar
  27. 27.
    Chen H, Shao L, Li Q, Wang J. Chem Soc Rev, 2013, 42: 2679–2724CrossRefGoogle Scholar
  28. 28.
    Wang G, Sun W, Luo Y, Fang N. J Am Chem Soc, 2010, 132: 16417–16422CrossRefGoogle Scholar
  29. 29.
    Xiao L, Ha JW, Wei L, Wang G, Fang N. Angew Chem Int Ed, 2012, 51: 7734–7738CrossRefGoogle Scholar
  30. 30.
    Kaplan L, Ierokomos A, Chowdary P, Bryant Z, Cui B. Sci Adv, 2018, 4: e1602170CrossRefGoogle Scholar
  31. 31.
    Xiao L, Qiao Y, He Y, Yeung ES. J Am Chem Soc, 2011, 133: 10638–10644CrossRefGoogle Scholar
  32. 32.
    Xu D, He Y, Yeung ES. Anal Chem, 2014, 86: 3397–3404CrossRefGoogle Scholar
  33. 33.
    Gu Y, Sun W, Wang G, Fang N. J Am Chem Soc, 2011, 133: 5720–5723CrossRefGoogle Scholar
  34. 34.
    Ye Z, Wei L, Zeng X, Weng R, Shi X, Wang N, Chen L, Xiao L. Anal Chem, 2018, 90: 1177–1185CrossRefGoogle Scholar
  35. 35.
    Zhang H, Wu R. Sci China Chem, 2015, 58: 780–792CrossRefGoogle Scholar
  36. 36.
    Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C. J Am Chem Soc, 2013, 135: 17359–17368CrossRefGoogle Scholar
  37. 37.
    Xue C, Zheng X, Chen K, Tian Y, Hu G. J Phys Chem Lett, 2016, 7: 514–519.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical EngineeringQingdao UniversityQingdaoChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of BiologyHunan UniversityChangshaChina

Personalised recommendations