Advertisement

Metal-free C3-alkoxycarbonylation of quinoxalin-2(1H)-ones with carbazates as ecofriendly ester sources

  • Long-Yong Xie
  • Sha Peng
  • Tai-Gang Fan
  • Yan-Fang Liu
  • Meng Sun
  • Li-Lin Jiang
  • Xing-Xing Wang
  • Zhong Cao
  • Wei-Min HeEmail author
Articles
  • 10 Downloads

Abstract

Quinoxaline-3-carboxylates and analogues are prevalent key structural motifs in bioactive natural products and synthetic drugs. However, the practical protocol for preparation of these motifs from simple raw materials under mild conditions remains rare. In this article, we report a facile protocol for the efficient preparation of various quinoxaline-3-carbonyl compounds (30 examples, 63%–92%) through oxidation coupling of quinoxalin-2(1H)-ones with readily available carbazates (or acyl hydrazines) in the presence of K2S2O8 as an oxidant in metal- and base-free conditions. When tert-butyl carbazate was used as the coupling reagent, the decarboxylation product 3-(tert-butyl)-1-methylquinoxalin-2(1H)-one was obtained. The application of this process into a gram-scale synthesis can be easily accomplished. Mechanistic investigations reveal that the functionalization of quinoxalin-2 (1H)-ones via a free-radical pathway.

Keywords

quinoxalin-2(1H)-ones alkoxycarbonylation carbazates synthetic methods metal-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Hunan Provincial Natural Science Foundation of China (2019JJ20008) and the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering.

Supplementary material

11426_2018_9446_MOESM1_ESM.docx (2.6 mb)
Metal-free C3-Alkoxycarbonylation of Quinoxalin-2(1H)-ones with Carbazates as Ecofriendly Ester Sources

References

  1. 1.
    (a) Mamedov VA, Zhukova NA. Progress in Quinoxaline Synthesis (Part 1), in: Progress in Heterocyclic Chemistry. Vol. 24. Amsterdam: Elsevier Ltd. 2012. 55–87Google Scholar
  2. (b).
    Mamedov VA, Zhukova NA. Progress in Quinoxaline Synthesis (Part 2), in: Progress in Heterocyclic Chemistry. Vol. 25. Amsterdam: Elsevier Ltd., 2013. 1–45Google Scholar
  3. (c).
    Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev Med Chem, 2018, 18: 392–413Google Scholar
  4. (d).
    Liang Q, Zhang Y, Zeng M, Guan L, Xiao Y, Xiao F. Toxicol Res, 2018, 7: 521–528Google Scholar
  5. 2.
    (a) Wei W, Wang L, Yue H, Bao P, Liu W, Hu C, Yang D, Wang H. ACS Sustain Chem Eng, 2018, 6: 17252–17257Google Scholar
  6. (b).
    Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Org Chem Front, 2018, 5: 2820–2828Google Scholar
  7. (c).
    Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org Chem Front, 2018, 5: 3382–3390Google Scholar
  8. (d).
    Yang L, Gao P, Duan XH, Gu YR, Guo LN. Org Lett, 2018, 20: 1034–1037Google Scholar
  9. 3.
    (a) Carrër A, Brion JD, Messaoudi S, Alami M. Org Lett, 2013, 15: 5606–5609Google Scholar
  10. (b).
    Carrër A, Brion JD, Alami M, Messaoudi S. Adv Synth Catal, 2014, 356: 3821–3830Google Scholar
  11. (c).
    Zhang X, Xu B, Xu MH. Org Chem Front, 2016, 3: 944–948Google Scholar
  12. (d).
    Yuan JW, Yang LR, Yin QY, Mao P, Qu LB. RSC Adv, 2016, 6: 35936–35944Google Scholar
  13. (e).
    Yuan J, Liu S, Qu L. Adv Synth Catal, 2017, 359: 4197–4207Google Scholar
  14. (f).
    Paul S, Ha JH, Park GE, Lee YR. Adv Synth Catal, 2017, 359: 1515–1521Google Scholar
  15. (g).
    Ramesh B, Reddy CR, Kumar GR, Reddy BVS. Tetrahedron Lett, 2018, 59: 628–631Google Scholar
  16. (h).
    Yin K, Zhang R. Synlett, 2018, 14: 597–602Google Scholar
  17. (i).
    Toonchue S, Sumunnee L, Phomphrai K, Yotphan S. Org Chem Front, 2018, 5: 1928–1932Google Scholar
  18. (j).
    Jung HI, Lee JH, Kim DY. Bull Korean Chem Soc, 2018, 39: 1003–1006Google Scholar
  19. 4.
    (a) Zeng X, Liu C, Wang X, Zhang J, Wang X, Hu Y. Org Biomol Chem, 2017, 15: 8929–8935Google Scholar
  20. (b).
    Yuan JW, Fu JH, Liu SN, Xiao YM, Mao P, Qu LB. Org Biomol Chem, 2018, 16: 3203–3212Google Scholar
  21. 5.
    (a) Li Y, Gao M, Wang L, Cui X. Org Biomol Chem, 2016, 14: 8428–8432Google Scholar
  22. (b).
    Gupta A, Deshmukh MS, Jain N. J Org Chem, 2017, 82: 4784–4792Google Scholar
  23. (c).
    Li KJ, Xu K, Liu YG, Zeng CC, Sun BG. Adv Synth Catal, 2018, 86Google Scholar
  24. (d).
    Sumunnee L, Pimpasri C, Noikham M, Yotphan S. Org Biomol Chem, 2018, 16: 2697–2704Google Scholar
  25. (e).
    Muhammad MH, Chen XL, Yu B, Qu LB, Zhao YF. Pure Appl Chem, 2019, 91: 33–41Google Scholar
  26. (f).
    Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org Lett, 2018, 20: 7125–7130Google Scholar
  27. (g).
    Yuan J, Zhu J, Fu J, Yang L, Xiao Y, Mao P, Du X, Qu L. Org Chem Front, 2019, 97Google Scholar
  28. 6.
    Yang Q, Zhang Y, Sun Q, Shang K, Zhang HY, Zhao J. Adv Synth Catal, 2018, 360: 4509–4514Google Scholar
  29. 7.
    Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Eur J Org Chem, 2018, 2018(30): 4113–4120Google Scholar
  30. 8.
    Wang L, Zhang Y, Li F, Hao X, Zhang HY, Zhao J. Adv Synth Catal, 2018, 360: 3969–3977Google Scholar
  31. 9.
    (a) Gao M, Li Y, Xie L, Chauvin R, Cui X. Chem Commun, 2016, 52: 2846–2849Google Scholar
  32. (b).
    Kim Y, Kim DY. Tetrahedron Lett, 2018, 59: 2443–2446Google Scholar
  33. (c).
    Yuan T, Pi C, You C, Cui X, Du S, Wan T, Wu Y. Chem Commun, 2019, 55: 163–166Google Scholar
  34. 10.
    (a) Miyamaru S, Umezu K, Ito A, Shimizu M. Eur J Org Chem, 2015, 2015: 3327–3337Google Scholar
  35. (b).
    Briguglio I, Piras S, Corona P, Pirisi MA, Burrai L, Boatto G, Gavini E, Rassu G. J Heterocyclic Chem, 2016, 53: 1721–1737Google Scholar
  36. (c).
    Zou N, Jiao JW, Feng Y, Pan CX, Liang C, Su GF, Mo DL. Org Lett 2019, 21: 481–485Google Scholar
  37. 11.
    Harayama T, Tezuka Y, Taga T, Yoneda F. J Chem Soc Perkin Trans 1, 1987, 0: 75Google Scholar
  38. 12.
    Wróbel Z, Stachowska K, Kwast A, Gościk A, Królikiewicz M, Pawłowski R, Turska I. Helv Chim Acta, 2013, 96: 956–968Google Scholar
  39. 13.
    Yan J, Xu Y, Zhuang F, Tian J, Zhang G. Mol Divers, 2016, 20: 567–573Google Scholar
  40. 14.
    (a) Li D, Ma H, Yu W. Adv Synth Catal, 2015, 357: 3696–3702Google Scholar
  41. (b).
    Li D, Li Y, Yu W. Synthesis, 2017, 49: 4283–4291Google Scholar
  42. 15.
    (a) Yan H, Zhu C. Sci China Chem, 2017, 60: 214–222Google Scholar
  43. (b).
    Wan X, Sun K, Zhang G. Sci China Chem, 2017, 60: 353–357Google Scholar
  44. (c).
    Sun K, Lv Y, Shi Z, Fu F, Zhang C, Zhang Z. Sci China Chem, 2017, 60: 730–733Google Scholar
  45. (d).
    Sun K, Shi Z, Liu Z, Luan B, Zhu J, Xue Y. Org Lett, 2018, 20: 6687–6690Google Scholar
  46. (e).
    Liu KJ, Jiang S, Lu LH, Tang LL, Tang SS, Tang HS, Tang Z, He WM, Xu X. Green Chem, 2018, 20: 3038–3043Google Scholar
  47. (f).
    Fan J, Wang PM, Wang JN, Zhao X, Liu ZW, Wei JF, Shi XY. Sci China Chem, 2018, 61: 153–158Google Scholar
  48. (g).
    Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci China Chem, 2018, 61: 294–299Google Scholar
  49. (h).
    Zhang D, Huang Z, Lei A. Sci China Chem, 2018, 61: 1274–1277Google Scholar
  50. (i).
    Hao S, Li LX, Dong DQ, Wang ZL, Yu XY. Tetrahedron Lett, 2018, 59: 4073–4075Google Scholar
  51. (j).
    Wang J, Li B, Liu LC, Jiang C, He T, He W. Sci China Chem, 2018, 61: 1594–1599Google Scholar
  52. (k).
    Sun K, Li SJ, Chen XL, Liu Y, Huang XQ, Wei DH, Qu LB, Zhao YF, Yu B. Chem Commun, 2019, 49Google Scholar
  53. 16.
    (a) Gao Y, Lu W, Liu P, Sun P. J Org Chem, 2016, 81: 2482–2487Google Scholar
  54. (b).
    Li X, Fang X, Zhuang S, Liu P, Sun P. Org Lett, 2017, 19: 3580–3583Google Scholar
  55. (c).
    Pan C, Han J, Zhang H, Zhu C. J Org Chem, 2014, 79: 5374–5378Google Scholar
  56. (d).
    Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J Org Chem, 2014, 79: 446–451Google Scholar
  57. (e).
    Li X, Fang M, Hu P, Hong G, Tang Y, Xu X. Adv Synth Catal, 2014, 356: 2103–2106Google Scholar
  58. 17.
    (a) He M, Han B. Sci China Chem, 2017, 60: 837–838Google Scholar
  59. (b).
    Li X, He X, Liu X, He LN. Sci China Chem, 2017, 60: 841–852Google Scholar
  60. (c).
    Han B. Acta Phys-Chim Sin, 2018, 34: 837–837Google Scholar
  61. 18.
    (a) Wu C, Lu LH, Peng AZ, Jia GK, Peng C, Cao Z, Tang Z, He WM, Xu X. Green Chem, 2018, 20: 3683–3688Google Scholar
  62. (b).
    Wu C, Wang Z, Hu Z, Zeng F, Zhang XY, Cao Z, Tang Z, He WM, Xu XH. Org Biomol Chem, 2018, 16: 3177–3180Google Scholar
  63. (c).
    Wang Z, Yang L, Liu H, Bao W, Tan Y, Wang M, Tang Z, He W. Chin J Org Chem, 2018, 38: 2639–2647Google Scholar
  64. (d).
    Bao WH, Wu C, Wang JT, Xia W, Chen P, Tang Z, Xu X, He WM. Org Biomol Chem, 2018, 16: 8403–8407Google Scholar
  65. (e).
    Lu LH, Zhou SJ, He WB, Xia W, Chen P, Yu X, Xu X, He WM. Org Biomol Chem, 2018, 16: 9064–9068Google Scholar
  66. (f).
    Lu LH, Zhou SJ, Sun M, Chen JL, Xia W, Yu X, Xu X, He WM. ACS Sustain Chem Eng, 2019, 7: 1574–1579Google Scholar
  67. (g).
    Cao Z, Li WF, Liu C, Peng YY, Huang Y, Xiao ZL. Chin J Anal Chem, 2019, 47: 229–236Google Scholar
  68. (h).
    Wu C, Xiao HJ, Wang SW, Tang MS, Tang ZL, Xia W, Li WF, Cao Z, He WM. ACS Sustain Chem Eng, 2019, 7: 2169–2175Google Scholar
  69. 19.
    (a) Xie LY, Li YJ, Qu J, Duan Y, Hu J, Liu KJ, Cao Z, He WM. Green Chem, 2017, 19: 5642–5646Google Scholar
  70. (b).
    Xie LY, Duan Y, Lu LH, Li YJ, Peng S, Wu C, Liu KJ, Wang Z, He WM. ACS Sustain Chem Eng, 2017, 5: 10407–10412Google Scholar
  71. (c).
    Wu C, Wang J, Zhang XY, Jia GK, Cao Z, Tang Z, Yu X, Xu X, He WM. Org Biomol Chem, 2018, 16: 5050–5054Google Scholar
  72. (d).
    Xie LY, Peng S, Liu F, Chen GR, Xia W, Yu X, Li WF, Cao Z, He WM. Org Chem Front, 2018, 5: 2604–2609Google Scholar
  73. (e).
    Xie LY, Peng S, Liu F, Yi JY, Wang M, Tang Z, Xu X, He WM. Adv Synth Catal, 2018, 360: 4259–4264Google Scholar
  74. (f).
    Xie LY, Peng S, Lu LH, Hu J, Bao WH, Zeng F, Tang Z, Xu X, He WM. ACS Sustain Chem Eng, 2018, 6: 7989–7994Google Scholar
  75. (g).
    Xie LY, Peng S, Tan JX, Sun RX, Yu X, Dai NN, Tang ZL, Xu X, He WM. ACS Sustain Chem Eng, 2018, 6: 16976–16981Google Scholar
  76. (h).
    Li GH, Dong DQ, Yang Y, Yu XY, Wang ZL. Adv Synth Catal, 2019, 361: 832–835Google Scholar
  77. (i).
    Ren D, Liu B, Li X, Koniarz S, Pawlicki M, Chmielewski PJ. Org Chem Front, 2019, https://doi.org/10.1039/C9QO00024KGoogle Scholar
  78. (j).
    Xie LY, Peng S, Jiang LL, Peng X, Xia W, Yu X, Wang XX, Cao Z, He WM. Org Chem Front, 2019, 6: 167–171Google Scholar
  79. 20.
    Liu J, Yang D, Yang X, Nie M, Wu G, Wang Z, Li W, Liu Y, Gong P. Bioorg Med Chem, 2017, 25: 4475–4486Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Long-Yong Xie
    • 1
  • Sha Peng
    • 1
  • Tai-Gang Fan
    • 1
  • Yan-Fang Liu
    • 1
  • Meng Sun
    • 2
  • Li-Lin Jiang
    • 1
  • Xing-Xing Wang
    • 3
  • Zhong Cao
    • 3
  • Wei-Min He
    • 1
    Email author
  1. 1.Department of ChemistryHunan University of Science and EngineeringYongzhouChina
  2. 2.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of EducationHunan University of Science and TechnologyXiangtanChina
  3. 3.Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and TechnologyChangshaChina

Personalised recommendations