A highly efficient cathode catalyst γ-MnO2@CNT composite for sodium-air batteries

  • Xuecen Zeng
  • Xuejing Zhang
  • Shuang Liu
  • Hao Yang
  • Zhanliang TaoEmail author
  • Jing LiangEmail author


The γ-MnO2@CNT catalyst was prepared by in situ solid phase synthesis and first applied into sodium-air batteries (SABs). The initial discharge specific capacity of SABs with γ-MnO2@CNT catalyst can reach 8804 mA h g−1 and the overpotential gap is only 140 mV, which is better than the batteries that is catalyzed by α-MnO2@CNT and pure CNT. Besides, the batteries also exhibit excellent cycle performance, which can keep relatively stable for 246 cycles at 500 mA g−1 and 140 cycles at 1000 mA g−1.


γ-MnO2 cathode catalyst solid phase synthesis sodium-air batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program (2016YFB0901502, 2016YFB0101201), the National Natural Science Foundation of China (NSFC) (51771094), Ministry of Education (B12015), and Tianjin High-Tech (18JCZDJC31500).

Supplementary material

11426_2018_9442_MOESM1_ESM.docx (3.1 mb)
Supplementary material, approximately 3199 KB.


  1. 1.
    Cheng F, Chen J. Chem Soc Rev, 2012, 41: 2172–2192CrossRefGoogle Scholar
  2. 2.
    Wang ZL, Xu D, Xu JJ, Zhang XB. Chem Soc Rev, 2014, 43: 7746–7786CrossRefGoogle Scholar
  3. 3.
    Zhao Z, Huang J, Peng Z. Angew Chem Int Ed, 2018, 57: 3874–3886CrossRefGoogle Scholar
  4. 4.
    Ren W, Zhu Z, An Q, Mai L. Small, 2017, 13: 1604181–1604193CrossRefGoogle Scholar
  5. 5.
    Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H. Adv Energy Mater, 2016, 6: 1501727CrossRefGoogle Scholar
  6. 6.
    Das SK, Lau S, Archer LA. J Mater Chem A, 2014, 2: 12623–12629CrossRefGoogle Scholar
  7. 7.
    Song K, Agyeman DA, Park M, Yang J, Kang YM. Adv Mater, 2017, 29: 06572Google Scholar
  8. 8.
    Yadegari H, Sun Q, Sun X. Adv Mater, 2016, 28: 7065–7093CrossRefGoogle Scholar
  9. 9.
    Landa-Medrano I, Li C, Ortiz-Vitoriano N, Ruiz de Larramendi I, Carrasco J, Rojo T. J Phys Chem Lett, 2016, 7: 1161–1166CrossRefGoogle Scholar
  10. 10.
    Yang H, Sun J, Wang H, Liang J, Li H. Chem Commun, 2018, 54: 4057–4060CrossRefGoogle Scholar
  11. 11.
    Xia C, Black R, Fernandes R, Adams B, Nazar LF. Nat Chem, 2015, 7: 496–501CrossRefGoogle Scholar
  12. 12.
    Yadegari H, Norouzi Banis M, Lushington A, Sun Q, Li R, Sham TK, Sun X. Energy Environ Sci, 2017, 10: 286–295CrossRefGoogle Scholar
  13. 13.
    Zhao Q, Yan Z, Chen C, Chen J. Chem Rev, 2017, 117: 10121–10211CrossRefGoogle Scholar
  14. 14.
    Li F, Chen J. Adv Energy Mater, 2017, 7: 1602934CrossRefGoogle Scholar
  15. 15.
    Hu X, Cheng F, Zhang N, Han X, Chen J. Small, 2015, 11: 5545–5550CrossRefGoogle Scholar
  16. 16.
    Hu X, Han X, Hu Y, Cheng F, Chen J. Nanoscale, 2014, 6: 3522–3525CrossRefGoogle Scholar
  17. 17.
    Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J. Chem Soc Rev, 2015, 44: 699–728CrossRefGoogle Scholar
  18. 18.
    Zhang T, Cheng F, Du J, Hu Y, Chen J. Adv Energy Mater, 2015, 5: 1400654CrossRefGoogle Scholar
  19. 19.
    Liu J, Ma Y, Roberts M, Gustafsson T, Edström K, Zhu J. J Power Sources, 2017, 352: 208–215CrossRefGoogle Scholar
  20. 20.
    Liu S, Zhu Y, Xie J, Huo Y, Yang HY, Zhu T, Cao G, Zhao X, Zhang S. Adv Energy Mater, 2014, 4: 1301960CrossRefGoogle Scholar
  21. 21.
    Hu X, Sun J, Li Z, Zhao Q, Chen C, Chen J. Angew Chem Int Ed, 2016, 55: 6482–6486CrossRefGoogle Scholar
  22. 22.
    Huang JK, Li M, Wan Y, Dey S, Ostwal M, Zhang D, Yang CW, Su CJ, Jeng US, Ming J, Amassian A, Lai Z, Han Y, Li S, Li LJ. ACS Nano, 2018, 12: 836–843CrossRefGoogle Scholar
  23. 23.
    Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M. J Power Sources, 2009, 194: 1202–1207CrossRefGoogle Scholar
  24. 24.
    Liu T, Liu Z, Kim G, Frith JT, Garcia-Araez N, Grey CP. Angew Chem Int Ed, 2017, 56: 16057–16062CrossRefGoogle Scholar
  25. 25.
    Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A, Janek J, Adelhelm P. Nat Mater, 2013, 12: 228–232CrossRefGoogle Scholar
  26. 26.
    Xia C, Fernandes R, Cho FH, Sudhakar N, Buonacorsi B, Walker S, Xu M, Baugh J, Nazar LF. J Am Chem Soc, 2016, 138: 11219–11226CrossRefGoogle Scholar
  27. 27.
    Frith JT, Landa-Medrano I, Ruiz de Larramendi I, Rojo T, Owen JR, Garcia-Araez N. Chem Commun, 2017, 53: 12008–12011CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations