A facile design for multifunctional AIEgen based on tetraaniline derivatives

  • Beibei Liu
  • Wei He
  • Hao Lu
  • Kun Wang
  • Mingming Huang
  • Ryan Tsz Kin KwokEmail author
  • Jacky Wing Yip Lam
  • Longcheng GaoEmail author
  • Jiping YangEmail author
  • Benzhong Tang


Aniline oligomers have been widely used in many fields due to their excellent physicochemical properties. Owing to strong intermolecular interactions, their emission is always weakened or quenched when they are in high concentration or aggregated state, which greatly limits their fluorescent applications. Inspired by the concept of aggregation-induced emission (AIE), herein we introduced large steric groups onto the aniline oligomer to prevent the formation of packing structure. In particular, diphenyl vinyl group was bonded with oligomeric tetraaniline by a facile synthetic procedure with high yield. The obtained aniline oligomer derivative exhibited typical AIE features, which was also confirmed by density functional theoretical calculation. More importantly, this AIE oligomer was able to detect Fe3+ ions selectively and quantitatively. The fluorescence intensity decreased linearly along with the increment of Fe3+ concentration. Moreover, we demonstrated that this AIE oligomer could stain live bacteria, such as E. coli and S. aureus efficiently. All these results suggest that such a readily accessible and multifunctional tetraaniline derivative provides a new platform for the construction of fluorescent materials.


tetraaniline aggregation-induced emission Fe3+ ion detection bacteria imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21574003, 21875009).

Supplementary material

11426_2018_9440_MOESM1_ESM.pdf (380 kb)
Supplementary material, approximately 228 KB.


  1. 1.
    Liang J, Tang BZ, Liu B. Chem Soc Rev, 2015, 44: 2798–2811CrossRefGoogle Scholar
  2. 2.
    Li Q, Li Z. Sci China Chem, 2015, 58: 1800–1809CrossRefGoogle Scholar
  3. 3.
    Wang ZL, Ma K, Xu B, Li X, Tian WJ. Sci China Chem, 2013, 56: 1234–1238CrossRefGoogle Scholar
  4. 4.
    Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 1: 4332CrossRefGoogle Scholar
  5. 5.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 0: 1740–1741CrossRefGoogle Scholar
  6. 6.
    Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ. Chem Mater, 2003, 15: 1535–1546CrossRefGoogle Scholar
  7. 7.
    Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388CrossRefGoogle Scholar
  8. 8.
    Dong Y, Lam JWY, Qin A, Liu J, Li Z, Tang BZ, Sun J, Kwok HS. Appl Phys Lett, 2007, 91: 011111CrossRefGoogle Scholar
  9. 9.
    Zhao Z, He B, Tang BZ. Chem Sci, 2015, 6: 5347–5365CrossRefGoogle Scholar
  10. 10.
    Li W, Chen D, Wang H, Luo S, Dong L, Zhang Y, Shi J, Tong B, Dong Y. ACS Appl Mater Interfaces, 2015, 7: 26094–26100CrossRefGoogle Scholar
  11. 11.
    Li R, Xiao S, Li Y, Lin Q, Zhang R, Zhao J, Yang C, Zou K, Li D, Yi T. Chem Sci, 2014, 5: 3922–3928CrossRefGoogle Scholar
  12. 12.
    Yang M, Zhang Y, Zhu W, Wang H, Huang J, Cheng L, Zhou H, Wu J, Tian Y. J Mater Chem C, 2015, 3: 1994–2002CrossRefGoogle Scholar
  13. 13.
    Zheng M, Zhang DT, Sun MX, Li YP, Liu TL, Xue SF, Yang WJ. J Mater Chem C, 2014, 2: 1913–1920CrossRefGoogle Scholar
  14. 14.
    Gu K, Qiu W, Guo Z, Yan C, Zhu S, Yao D, Shi P, Tian H, Zhu WH. Chem Sci, 2019, 10: 398–405CrossRefGoogle Scholar
  15. 15.
    Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Shi P, James TD, Tian H, Zhu WH. Angew Chem Int Ed, 2015, 54: 7275–7280CrossRefGoogle Scholar
  16. 16.
    Han T, Feng X, Tong B, Shi J, Chen L, Zhi J, Dong Y. Chem Commun, 2012, 48: 416–418CrossRefGoogle Scholar
  17. 17.
    Song Y, Zong L, Zhang L, Li Z. Sci China Chem, 2017, 60: 1596–1601CrossRefGoogle Scholar
  18. 18.
    Li Q, Li Z. Adv Sci, 2017, 4: 1600484CrossRefGoogle Scholar
  19. 19.
    Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem Soc Rev, 2012, 41: 3878–3896CrossRefGoogle Scholar
  20. 20.
    Mei J, Huang Y, Tian H. ACS Appl Mater Interfaces, 2018, 10: 12217–12261CrossRefGoogle Scholar
  21. 21.
    Qin A, Tang BZ. Sci China Chem, 2018, 61: 879–881CrossRefGoogle Scholar
  22. 22.
    Zhao Z, Chen B, Geng J, Chang Z, Aparicio-Ixta L, Nie H, Goh CC, Ng LG, Qin A, Ramos-Ortiz G, Liu B, Tang BZ. Part Part Syst Charact, 2014, 31: 481–491CrossRefGoogle Scholar
  23. 23.
    Song Z, Zhang W, Jiang M, Sung HHY, Kwok RTK, Nie H, Williams ID, Liu B, Tang BZ. Adv Funct Mater, 2016, 26: 824–832CrossRefGoogle Scholar
  24. 24.
    Cao L, Gong C, Yang J. Macromol Rapid Commun, 2016, 37: 343–350CrossRefGoogle Scholar
  25. 25.
    Huang LT, Yen HJ, Liou GS. Macromolecules, 2011, 44: 9595–9610CrossRefGoogle Scholar
  26. 26.
    Cao L, Gong C, Yang J. Electrochim Acta, 2016, 192: 422–430CrossRefGoogle Scholar
  27. 27.
    Wang E, Zhao E, Hong Y, Lam JWY, Tang BZ. J Mater Chem B, 2014, 2: 2013–2019CrossRefGoogle Scholar
  28. 28.
    Kang M, Gu X, Kwok RTK, Leung CWT, Lam JWY, Li F, Tang BZ. Chem Commun, 2016, 52: 5957–5960CrossRefGoogle Scholar
  29. 29.
    Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, Tang BZ. Chem Sci, 2017, 8: 5440–5446CrossRefGoogle Scholar
  30. 30.
    Wen W, Shi ZF, Cao XP, Xu NS. Dyes Pigments, 2016, 132: 282–290CrossRefGoogle Scholar
  31. 31.
    Shen XY, Wang YJ, Zhao E, Yuan WZ, Liu Y, Lu P, Qin A, Ma Y, Sun JZ, Tang BZ. J Phys Chem C, 2013, 117: 7334–7347CrossRefGoogle Scholar
  32. 32.
    Pan C, Wang K, Ji S, Wang H, Li Z, He H, Huo Y. RSC Adv, 2017, 7: 36007–36014CrossRefGoogle Scholar
  33. 33.
    Bian N, Chen Q, Qiu XL, Qi AD, Han BH. New J Chem, 2011, 35: 1667–1671CrossRefGoogle Scholar
  34. 34.
    Kaya EN, Yuksel F, Özpınar GAı, Bulut M, Durmuş M. Sens Actuators B-Chem, 2014, 194: 377–388CrossRefGoogle Scholar
  35. 35.
    Wang L, Li H, Cao D. Sens Actuators B-Chem, 2013, 181: 749–755CrossRefGoogle Scholar
  36. 36.
    Niu Q, Sun T, Li T, Guo Z, Pang H. Sens Actuators B-Chem, 2018, 266: 730-743CrossRefGoogle Scholar
  37. 37.
    Shi X, Wang H, Han T, Feng X, Tong B, Shi J, Zhi J, Dong Y. J Mater Chem, 2012, 22: 19296–19302CrossRefGoogle Scholar
  38. 38.
    Wu WN, Mao PD, Wang Y, Mao XJ, Xu ZQ, Xu ZH, Zhao XL, Fan YC, Hou XF. Sens Actuators B-Chem, 2018, 258: 393–401CrossRefGoogle Scholar
  39. 39.
    Pannipara M, Al-Sehemi AG, Kalam A, Asiri AM, Arshad MN. Spectrochim Acta Part A-Mol Biomol Spectr, 2017, 183: 84–89CrossRefGoogle Scholar
  40. 40.
    He X, Wang X, Zhang L, Fang G, Liu J, Wang S. Sens Actuators BChem, 2018, 271: 289–299CrossRefGoogle Scholar
  41. 41.
    Zhao E, Chen Y, Wang H, Chen S, Lam JWY, Leung CWT, Hong Y, Tang BZ. ACS Appl Mater Interfaces, 2015, 7: 7180–7188CrossRefGoogle Scholar
  42. 42.
    Jiang G, Wang J, Yang Y, Zhang G, Liu Y, Lin H, Zhang G, Li Y, Fan X. Biosens Bioelectron, 2016, 85: 62–67CrossRefGoogle Scholar
  43. 43.
    Zhou Y, Liu H, Zhao N, Wang Z, Michael MZ, Xie N, Tang BZ, Tang Y. Sci China Chem, 2018, 61: 892–897CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceThe Hong Kong University of Science and TechnologyHong KongChina
  3. 3.Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Key Laboratory of Beijing Energy, School of Chemistry and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations