Advertisement

Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells

  • Jin Yuan
  • Yuanzhi Jiang
  • Tingwei He
  • Guodong Shi
  • Zixiong Fan
  • Mingjian YuanEmail author
Articles SPECIAL ISSUE: Dedicated to the 100th Anniversary of Nankai University
  • 28 Downloads

Abstract

Mixed tin-lead iodide perovskites exhibit the characteristics of low toxicity and improved light harvesting ability up to nearinfrared (NIR) spectral region, making them as an attractive alternative for traditional lead based perovskites. However, the performance of lead-based perovskites solar cells is still far inferior to their lead analogues owing to the unavoidable oxidation of Sn2+ to Sn4+. Here we introduced two-dimensional (2D) perovskite on the top of three dimensional (3D) perovskite film as a capping layer to reduce the self-oxidation, and thus improved the device stability. 2D capping layer was then confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The existence of the 2D protecting thin layer significantly reduce the spontaneous Sn2+ oxidation, thus improve the device performance and reduce the hysteresis. The phenomena could be ascribed to the improved charge extraction efficiency causing by prohibited nonradiative recombination. On top of this, the photovoltaic devices based on conventional-structure configuration were fabricated. Taking advantage of the 2D capping layer, 2D/3D hybrid perovskite photovoltaic devices achieve a open-circuit voltage (Voc) of 0.77 V with short circuit current density (Jsc) of 26.60 mA cm−2, delivering the best-performing power conversion efficiency of 15.5%. Moreover, the 2D/3D perovskite devices maintained 60% its initial efficiency after 40 h exposed in air (humidity around 30%, temperature 22 °C), while 3D perovskite-based devices completely failed.

Keywords

two-dimensional perovskites tin-lead perovskites 2D/3D stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21771114), MOE 111 (B12015), the Natural Science Foundation of Tianjin (17JCYBJC40900, 18YFZCGX00580), and the Fundamental Research Funds for the Central Universities. M. Yuan thanks to the financial support from “Thousand Youth Talents Plan of China”.

Supplementary material

11426_2018_9436_MOESM1_ESM.pdf (631 kb)
Two-dimensional Perovskite Capping Layer for Stable and Efficient Tin–Lead Perovskite Solar Cells

References

  1. 1.
    Zhang W, Eperon GE, Snaith HJ. Nat Energy, 2016, 1: 16048CrossRefGoogle Scholar
  2. 2.
    Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Science, 2017, 356: 1376–1379CrossRefGoogle Scholar
  3. 3.
    Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H. Adv Mater, 2018, 30: 1705786CrossRefGoogle Scholar
  4. 4.
    Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 358: 768–771CrossRefGoogle Scholar
  5. 5.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  6. 6.
    Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682–689CrossRefGoogle Scholar
  7. 7.
    Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Nat Photon, 2017, 8: 489–494CrossRefGoogle Scholar
  8. 8.
    Stoumpos CC, Frazer L, Clark DJ, Kim YS, Rhim SH, Freeman AJ, Ketterson JB, Jang JI, Kanatzidis MG. J Am Chem Soc, 2015, 137: 6804–6819CrossRefGoogle Scholar
  9. 9.
    Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. J Am Chem Soc, 2016, 138: 2138–2141CrossRefGoogle Scholar
  10. 10.
    Saparov B, Hong F, Sun JP, Duan HS, Meng W, Cameron S, Hill IG, Yan Y, Mitzi DB. Chem Mater, 2015, 27: 5622–5632CrossRefGoogle Scholar
  11. 11.
    Cortecchia D, Dewi HA, Yin J, Bruno A, Chen S, Baikie T, Boix PP, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Inorg Chem, 2016, 55: 1044–1052CrossRefGoogle Scholar
  12. 12.
    Ju MG, Chen M, Zhou Y, Garces HF, Dai J, Ma L, Padture NP, Zeng XC. ACS Energy Lett, 2018, 3: 297–304CrossRefGoogle Scholar
  13. 13.
    Liao W, Zhao D, Yu Y, Shrestha N, Ghimire K, Grice CR, Wang C, Xiao Y, Cimaroli AJ, Ellingson RJ, Podraza NJ, Zhu K, Xiong RG, Yan Y. J Am Chem Soc, 2016, 138: 12360–12363CrossRefGoogle Scholar
  14. 14.
    Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. J Am Chem Soc, 2015, 45: 8094–8099Google Scholar
  15. 15.
    Li Y, Sun W, Yan W, Ye S, Rao H, Peng H, Zhao Z, Bian Z, Liu Z, Zhou H, Huang C. Adv Energy Mater, 2016, 6: 1601353CrossRefGoogle Scholar
  16. 16.
    Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice CR, Cimaroli AJ, Guan L, Ellingson RJ, Zhu K, Zhao X, Xiong RG, Yan Y. Nat Energy, 2017, 2: 17018CrossRefGoogle Scholar
  17. 17.
    Koh TM, Krishnamoorthy T, Yantara N, Shi C, Leong WL, Boix PP, Grimsdale AC, Mhaisalkar SG, Mathews N. J Mater Chem A, 2015, 3: 14996–15000CrossRefGoogle Scholar
  18. 18.
    Song TB, Yokoyama T, Stoumpos CC, Logsdon J, Cao DH, Wasielewski MR, Aramaki S, Kanatzidis MG. J Am Chem Soc, 2017, 139: 836–842CrossRefGoogle Scholar
  19. 19.
    Shao S, Liu J, Portale G, Fang HH, Blake GR, ten Brink GH, Koster LJA, Loi MA. Adv Energy Mater, 2018, 8: 1702019CrossRefGoogle Scholar
  20. 20.
    Wang N, Zhou Y, Ju MG, Garces HF, Ding T, Pang S, Zeng XC, Padture NP, Sun XW. Adv Energy Mater, 2016, 6: 1601130CrossRefGoogle Scholar
  21. 21.
    Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ, Schulz P, Meng W, Zhu K, Xiong RG, Yan Y. Adv Mater, 2016, 28: 9333–9340CrossRefGoogle Scholar
  22. 22.
    Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RPH, Kanatzidis MG. J Am Chem Soc, 2015, 137: 11445–11452CrossRefGoogle Scholar
  23. 23.
    Lee SJ, Shin SS, Kim YC, Kim D, Ahn TK, Noh JH, Seo J, Seok SI. J Am Chem Soc, 2016, 138: 3974–3977CrossRefGoogle Scholar
  24. 24.
    Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019–9038CrossRefGoogle Scholar
  25. 25.
    Kayesh ME, Chowdhury TH, Matsuishi K, Kaneko R, Kazaoui S, Lee JJ, Noda T, Islam A. ACS Energy Lett, 2018, 3: 1584–1589CrossRefGoogle Scholar
  26. 26.
    Ke W, Stoumpos CC, Logsdon JL, Wasielewski MR, Yan Y, Fang G, Kanatzidis MG. J Am Chem Soc, 2016, 138: 14998–15003CrossRefGoogle Scholar
  27. 27.
    Ke W, Priyanka P, Vegiraju S, Stoumpos CC, Spanopoulos I, Soe CMM, Marks TJ, Chen MC, Kanatzidis MG. J Am Chem Soc, 2018, 140: 388–393CrossRefGoogle Scholar
  28. 28.
    Kapil G, Ripolles TS, Hamada K, Ogomi Y, Bessho T, Kinoshita T, Chantana J, Yoshino K, Shen Q, Toyoda T, Minemoto T, Murakami TN, Segawa H, Hayase S. Nano Lett, 2018, 18: 3600–3607CrossRefGoogle Scholar
  29. 29.
    Ran C, Xi J, Gao W, Yuan F, Lei T, Jiao B, Hou X, Wu Z. ACS Energy Lett, 2018, 3: 713–721CrossRefGoogle Scholar
  30. 30.
    Xu G, Bi P, Wang S, Xue R, Zhang J, Chen H, Chen W, Hao X, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1804427CrossRefGoogle Scholar
  31. 31.
    Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda MM, Wang C, Jiang CS, Al-Jassim M, Ellingson RJ, Podraza NJ, Zhu K, Yan Y. Adv Energy Mater, 2019, 9: 1803135CrossRefGoogle Scholar
  32. 32.
    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356–1368CrossRefGoogle Scholar
  33. 33.
    Quan LN, Yuan M, Comin R, Voznyy O, Beauregard EM, Hoogland S, Buin A, Kirmani AR, Zhao K, Amassian A, Kim DH, Sargent EH. J Am Chem Soc, 2016, 138: 2649–2655CrossRefGoogle Scholar
  34. 34.
    Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu SF. Energy Environ Sci, 2017, 10: 2095–2102CrossRefGoogle Scholar
  35. 35.
    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan WL, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill CR, Qin T, Wang J, Huang W. Adv Mater, 2018, 30: 1804771CrossRefGoogle Scholar
  36. 36.
    Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y. Sci Adv, 2017, 3: e1700841CrossRefGoogle Scholar
  37. 37.
    Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135CrossRefGoogle Scholar
  38. 38.
    Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK. Nat Commun, 2017, 8: 15684CrossRefGoogle Scholar
  39. 39.
    Chen P, Bai Y, Wang S, Lyu M, Yun JH, Wang L. Adv Funct Mater, 2018, 28: 1706923CrossRefGoogle Scholar
  40. 40.
    Chen J, Seo JY, Park NG. Adv Energy Mater, 2018, 8: 1702714CrossRefGoogle Scholar
  41. 41.
    Hu Y, Qiu T, Bai F, Ruan W, Zhang S. Adv Energy Mater, 2018, 8: 1703620CrossRefGoogle Scholar
  42. 42.
    Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. J Am Chem Soc, 2015, 137: 7843–7850CrossRefGoogle Scholar
  43. 43.
    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693–6699CrossRefGoogle Scholar
  44. 44.
    Chen Z, Liu M, Li Z, Shi T, Yang Y, Yip HL, Cao Y. iScience, 2018, 9: 337–346CrossRefGoogle Scholar
  45. 45.
    Ramirez D, Schutt K, Wang Z, Pearson AJ, Ruggeri E, Snaith HJ, Stranks SD, Jaramillo F. ACS Energy Lett, 2018, 3: 2246–2251CrossRefGoogle Scholar
  46. 46.
    Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732–2743CrossRefGoogle Scholar
  47. 47.
    Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726CrossRefGoogle Scholar
  48. 48.
    Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J. J Phys Chem Lett, 2018, 9: 654–658CrossRefGoogle Scholar
  49. 49.
    Chen Y, Yu S, Sun Y, Liang Z. J Phys Chem Lett, 2018, 9: 2627–2631CrossRefGoogle Scholar
  50. 50.
    Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G. Angew Chem Int Ed, 2015, 54: 9705–9709CrossRefGoogle Scholar
  51. 51.
    Park M, Kim JY, Son HJ, Lee CH, Jang SS, Ko MJ. Nano Energy, 2016, 26: 208–215CrossRefGoogle Scholar
  52. 52.
    Yang Z, Rajagopal A, Chueh CC, Jo SB, Liu B, Zhao T, Jen AKY. Adv Mater, 2016, 28: 8990–8997CrossRefGoogle Scholar
  53. 53.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784CrossRefGoogle Scholar
  54. 54.
    Fang Y, Bi C, Wang D, Huang J. ACS Energy Lett, 2017, 2: 782–794CrossRefGoogle Scholar
  55. 55.
    Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y. Adv Mater, 2018, 30: 1805323CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jin Yuan
    • 1
  • Yuanzhi Jiang
    • 1
  • Tingwei He
    • 1
  • Guodong Shi
    • 1
  • Zixiong Fan
    • 1
  • Mingjian Yuan
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of ChemistryNankai UniversityTianjinChina
  2. 2.Renewable Energy Conversion and Storage CenterNankai UniversityTianjinChina

Personalised recommendations