Investigation on two triphenylene based electron transport materials

  • Minghan Cai
  • Chongguang Zhao
  • Dongdong Zhang
  • Xiaozeng Song
  • Lian DuanEmail author


Promoting electron mobility is the key to designing high performance electron transport materials (ETMs). Formation of intermolecular interaction can be helpful to enhance their electron mobilities as a result of more ordered molecular stacking. Here, to reveal the inherent influence of intermolecular π-π stacking on the electron mobilities, we designed two ETMs, namely, 2,4-diphenyl-6-[3-(2-triphenylenyl)phenyl]-1,3,5-triazine (TPTRZ) and 2,4-diphenyl-6-[4′-(2-triphenylenyl)[1,1′-biphenyl]-3-yl]-1,3,5-triazine (TPPTRZ). Thermal, photophysical and electrochemical measurement results indicate they are good ETM candidates. Additionally, TPTRZ and TPPTRZ exhibit high electron mobilities of 3.60×10−5 and 3.58×10−5 cm2 V−1 s−1, respectively, at an electric field of 7×105 V cm−1. By taking X-ray single crystal structure, theoretical calculation and time of flight (TOF) results into consideration, it is revealed that strong intermolecular π-π stacking induced by planar triphenylene and triphenyltriazine units renders TPTRZ and TPPTRZ small energetic and positional disorder parameters, and results in their high electron mobilities thereby. By further enhancing intermolecular π-π stacking, ETMs with even higher electron mobilities can thus be anticipated.

organic light-emitting diode electron transport material electron mobility π-π stacking intermolecular interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (2017YFA0204501), the National Natural Science Foundation of China (51525304, U1601651), the National Basic Research Program of China (2015CB655002) and the Tsinghua University Initiative Scientific Research Program (20161080039, 20161080040).

Supplementary material

11426_2018_9434_MOESM1_ESM.pdf (581 kb)
Supplementary material, approximately 228 KB.


  1. 1.
    Tang CW, VanSlyke SA. Appl Phys Lett, 1987, 51: 913–915CrossRefGoogle Scholar
  2. 2.
    Jou JH, Kumar S, Agrawal A, Li TH, Sahoo S. J Mater Chem C, 2015, 3: 2974–3002CrossRefGoogle Scholar
  3. 3.
    Han TH, Choi MR, Jeon CW, Kim YH, Kwon SK, Lee TW. Sci Adv, 2016, 2: e1601428CrossRefGoogle Scholar
  4. 4.
    Lin TA, Chatterjee T, Tsai WL, Lee WK, Wu MJ, Jiao M, Pan KC, Yi CL, Chung CL, Wong KT, Wu CC. Adv Mater, 2016, 28: 6976–6983CrossRefGoogle Scholar
  5. 5.
    Zeng W, Lai HY, Lee WK, Jiao M, Shiu YJ, Zhong C, Gong S, Zhou T, Xie G, Sarma M, Wong KT, Wu CC, Yang C. Adv Mater, 2017, 30: 1704961CrossRefGoogle Scholar
  6. 6.
    Wu TL, Huang MJ, Lin CC, Huang PY, Chou TY, Chen-Cheng RW, Lin HW, Liu RS, Cheng CH. Nat Photon, 2018, 12: 235–240CrossRefGoogle Scholar
  7. 7.
    Murawski C, Leo K, Gather MC. Adv Mater, 2013, 25: 6801–6827CrossRefGoogle Scholar
  8. 8.
    Shirota Y, Kageyama H. Chem Rev, 2007, 107: 953–1010CrossRefGoogle Scholar
  9. 9.
    Duan L, Qiao J, Sun Y, Qiu Y. Adv Mater, 2011, 23: 1137–1144CrossRefGoogle Scholar
  10. 10.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J. Adv Mater, 2011, 23: 926–952CrossRefGoogle Scholar
  11. 11.
    Tao Y, Yang C, Qin J. Chem Soc Rev, 2011, 40: 2943–2970CrossRefGoogle Scholar
  12. 12.
    Chen D, Su SJ, Cao Y. J Mater Chem C, 2014, 2: 9565–9578CrossRefGoogle Scholar
  13. 13.
    Wex B, Kaafarani BR. J Mater Chem C, 2017, 5: 8622–8653CrossRefGoogle Scholar
  14. 14.
    Lu SY, Mukhopadhyay S, Froese R, Zimmerman PM. J Chem Inf Model, 2018, 58: 2440–2449CrossRefGoogle Scholar
  15. 15.
    Li Y, Zhang D, Zhang Y, Cai M, Duan L. Sci China Chem, 2016, 59: 684–691CrossRefGoogle Scholar
  16. 16.
    Zhang D, Cai M, Bin Z, Zhang Y, Zhang D, Duan L. Chem Sci, 2016, 7: 3355–3363CrossRefGoogle Scholar
  17. 17.
    Yang H, Liang Q, Han C, Zhang J, Xu H. Adv Mater, 2017, 29: 1700553CrossRefGoogle Scholar
  18. 18.
    Byeon SY, Kim JH, Lee JY. ACS Appl Mater Interfaces, 2017, 9: 13339–13346CrossRefGoogle Scholar
  19. 19.
    Cai M, Zhang D, Huang T, Song X, Duan L. ACS Appl Mater Interfaces, 2017, 9: 17279–17289CrossRefGoogle Scholar
  20. 20.
    Song X, Zhang D, Huang T, Cai M, Duan L. Sci China Chem, 2018, 61: 836–843CrossRefGoogle Scholar
  21. 21.
    Watanabe Y, Sasabe H, Yokoyama D, Beppu T, Katagiri H, Kido J. J Mater Chem C, 2016, 4: 3699–3704CrossRefGoogle Scholar
  22. 22.
    Kamata T, Sasabe H, Watanabe Y, Yokoyama D, Katagiri H, Kido J. J Mater Chem C, 2016, 4: 1104–1110CrossRefGoogle Scholar
  23. 23.
    Zhang D, Qiao J, Zhang D, Duan L. Adv Mater, 2017, 29: 1702847CrossRefGoogle Scholar
  24. 24.
    Zhang D, Wei P, Zhang D, Duan L. ACS Appl Mater Interfaces, 2017, 9: 19040–19047CrossRefGoogle Scholar
  25. 25.
    Sasabe H, Tanaka D, Yokoyama D, Chiba T, Pu YJ, Nakayama K, Yokoyama M, Kido J. Adv Funct Mater, 2011, 21: 336–342CrossRefGoogle Scholar
  26. 26.
    Yokoyama D, Sasabe H, Furukawa Y, Adachi C, Kido J. Adv Funct Mater, 2011, 21: 1375–1382CrossRefGoogle Scholar
  27. 27.
    Watanabe Y, Sasabe H, Yokoyama D, Beppu T, Katagiri H, Pu YJ, Kido J. Adv Opt Mater, 2015, 3: 769–773CrossRefGoogle Scholar
  28. 28.
    Sun Y, Duan L, Zhang D, Qiao J, Dong G, Wang L, Qiu Y. Adv Funct Mater, 2011, 21: 1881–1886CrossRefGoogle Scholar
  29. 29.
    Zhang D, Song X, Li H, Cai M, Bin Z, Huang T, Duan L. Adv Mater, 2018, 30: 1707590CrossRefGoogle Scholar
  30. 30.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267CrossRefGoogle Scholar
  31. 31.
    Ostroverkhova O. Chem Rev, 2016, 116: 13279–13412CrossRefGoogle Scholar
  32. 32.
    Biedermann F, Schneider HJ. Chem Rev, 2016, 116: 5216–5300CrossRefGoogle Scholar
  33. 33.
    Tritto E, Chico R, Sanz-Enguita G, Folcia CL, Ortega J, Coco S, Espinet P. Inorg Chem, 2014, 53: 3449–3455CrossRefGoogle Scholar
  34. 34.
    Shi J, Wang Y, Xiao M, Zhong P, Liu Y, Tan H, Zhu M, Zhu W. Tetrahedron, 2015, 71: 463–469CrossRefGoogle Scholar
  35. 35.
    Takahashi T, Shizu K, Yasuda T, Togashi K, Adachi C. Sci Tech Adv Mater, 2014, 15: 034202CrossRefGoogle Scholar
  36. 36.
    Togashi K, Nomura S, Yokoyama N, Yasuda T, Adachi C. J Mater Chem, 2012, 22: 20689–20695CrossRefGoogle Scholar
  37. 37.
    Im Y, Song W, Lee JY. J Mater Chem C, 2015, 3: 8061–8065CrossRefGoogle Scholar
  38. 38.
    Lee NJ, Jeon JH, In I, Lee JH, Suh MC. Dyes Pigments, 2014, 101: 221–228CrossRefGoogle Scholar
  39. 39.
    Cai M, Song X, Zhang D, Qiao J, Duan L. J Mater Chem C, 2017, 5: 3372–3381CrossRefGoogle Scholar
  40. 40.
    Im Y, Kim M, Cho YJ, Seo JA, Yook KS, Lee JY. Chem Mater, 2017, 29: 1946–1963CrossRefGoogle Scholar
  41. 41.
    Lu T, Chen F. J Comput Chem, 2011, 33: 580–592CrossRefGoogle Scholar
  42. 42.
    Naka S, Okada H, Onnagawa H, Tsutsui T. Appl Phys Lett, 2000, 76: 197–199CrossRefGoogle Scholar
  43. 43.
    Scher H, Montroll EW. Phys Rev B, 1975, 12: 2455–2477CrossRefGoogle Scholar
  44. 44.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem Rev, 2007, 107: 926–952CrossRefGoogle Scholar
  45. 45.
    Chen L, Dong G, Duan L, Qiao J, Zhang D, Wang L, Qiu Y. J Phys Chem C, 2010, 114: 9056–9061CrossRefGoogle Scholar
  46. 46.
    Li C, Duan L, Sun Y, Li H, Qiu Y. J Phys Chem C, 2012, 116: 19748–19754CrossRefGoogle Scholar
  47. 47.
    Borsenberger PM, Fitzgerald JJ. J Phys Chem, 1993, 97: 4815–4819CrossRefGoogle Scholar
  48. 48.
    Schein LB, Borsenberger PM. Chem Phys, 1993, 177: 773–781CrossRefGoogle Scholar
  49. 49.
    Pautmeier L, Ries B, Richert R, Bässler H. Chem Phys Lett, 1988, 143: 459–462CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Minghan Cai
    • 1
  • Chongguang Zhao
    • 1
  • Dongdong Zhang
    • 1
  • Xiaozeng Song
    • 1
  • Lian Duan
    • 1
    Email author
  1. 1.Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations