Advertisement

Recent advances in active sites identification and regulation of M-N/C electro-catalysts towards ORR

  • Jie Liu
  • Zhao Jin
  • Xian Wang
  • Junjie GeEmail author
  • Changpeng LiuEmail author
  • Wei XingEmail author
Mini Reviews
  • 18 Downloads

Abstract

Transition metal and nitrogen co-doped carbon (M-N/C) catalysts are recognized as the most prospective alternatives for platinum-based electro-catalysts towards oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. Recently, significant progress has been achieved in the identification and regulation of active sites of this kind of catalysts. In this mini review, we summarize the techniques and strategies to identify active sites in M-N/C catalysts, the main debates on active sites types, the measurement method for active site density, the reactivity descriptors for M-N/C catalysts, and directions to the design of ORR M-N/C catalysts.

ORR electro-catalysts M-N/C active sites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Science and Technology Major Project (2017YFB0102900), the National Natural Science Foundation of China (21633008, 21433003, U1601211, 21733004), Jilin Province Science and Technology Development Program (20150101066JC, 20160622037JC, 20170203003SF, 20170520150JH), Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts (WQ20122200077).

References

  1. 1.
    Gewirth AA, Varnell JA, DiAscro AM. Chem Rev, 2018, 118: 2313–2339CrossRefPubMedGoogle Scholar
  2. 2.
    Sa YJ, Kim JH, Joo SH. J Electrochem Sci Te, 2017, 8: 169–182CrossRefGoogle Scholar
  3. 3.
    Wang Y, Li J, Wei Z. ChemElectroChem, 2018, 5: 1764–1774CrossRefGoogle Scholar
  4. 4.
    Huo P, Zhao P, Wang Y, Liu B, Yin G, Dong M. Energies, 2018, 11: 167CrossRefGoogle Scholar
  5. 5.
    Kang SY, Kim HJ, Chung YH. Nano Converg, 2018, 5: 13CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kiani M, Zhang J, Luo Y, Jiang C, Fan J, Wang G, Chen J, Wang R. J Energy Chem, 2018, 27: 1124–1139CrossRefGoogle Scholar
  7. 7.
    Li JC, Hou PX, Liu C. Small, 2017, 13: 1702002CrossRefGoogle Scholar
  8. 8.
    Li R, Zhang D, Zhou Y, Wang X, Guo G. Sci China Chem, 2016, 59: 746–751CrossRefGoogle Scholar
  9. 9.
    Lu S, Jin Y, Gu H, Zhang W. Sci China Chem, 2017, 60: 999–1006CrossRefGoogle Scholar
  10. 10.
    Ma J, Xiang Z, Zhang J. Sci China Chem, 2018, 61: 592–597CrossRefGoogle Scholar
  11. 11.
    Tong X, Wei Q, Zhan X, Zhang G, Sun S. Catalysts, 2016, 7: 1CrossRefGoogle Scholar
  12. 12.
    Chong L, Wen J, Kubal J, Sen FG, Zou J, Greeley J, Chan M, Barkholtz H, Ding W, Liu DJ. Science, 2018, 362: 1276–1281CrossRefPubMedGoogle Scholar
  13. 13.
    Jasinski R. Nature, 1964, 201: 1212–1213CrossRefGoogle Scholar
  14. 14.
    Jahnke HMS, Zimmermann G. Top Curr Chem, 1976, 61: 131–181Google Scholar
  15. 15.
    Gupta S, Tryk D, Bae I, Aldred W, Yeager E. J Appl Electrochem, 1989, 19: 19–27CrossRefGoogle Scholar
  16. 16.
    Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594–3657CrossRefPubMedGoogle Scholar
  17. 17.
    Goellner V, Armel V, Zitolo A, Fonda E, Jaouen F. J Electrochem Soc, 2015, 162: H403–H414CrossRefGoogle Scholar
  18. 18.
    Zagal JH, Koper MTM. Angew Chem Int Ed, 2016, 55: 14510–14521CrossRefGoogle Scholar
  19. 19.
    Masa J, Xia W, Muhler M, Schuhmann W. Angew Chem Int Ed, 2015, 54: 10102–10120CrossRefGoogle Scholar
  20. 20.
    Ren Q, Wang H, Lu XF, Tong YX, Li GR. Adv Sci, 2018, 5: 1700515CrossRefGoogle Scholar
  21. 21.
    Song Z, Cheng N, Lushington A, Sun X. Catalysts, 2016, 6: 116CrossRefGoogle Scholar
  22. 22.
    Huang X, Wang Y, Li W, Hou Y. Sci China Chem, 2017, 60: 1494–1507CrossRefGoogle Scholar
  23. 23.
    Yeager E. Electrochim Acta, 1984, 29: 1527–1537CrossRefGoogle Scholar
  24. 24.
    Xiong D, Li X, Fan L, Bai Z. Catalysts, 2018, 8: 301CrossRefGoogle Scholar
  25. 25.
    Borghei M, Lehtonen J, Liu L, Rojas OJ. Adv Mater, 2018, 30: 1703691CrossRefGoogle Scholar
  26. 26.
    Fukuzumi S, Lee YM, Nam W. ChemCatChem, 2018, 10: 9–28CrossRefGoogle Scholar
  27. 27.
    Ji Y, Dong H, Liu C, Li Y. J Mater Chem A, 2018, 6: 13489–13508CrossRefGoogle Scholar
  28. 28.
    Choi CH, Lim HK, Chung MW, Chon G, Ranjbar Sahraie N, Altin A, Sougrati MT, Stievano L, Oh HS, Park ES, Luo F, Strasser P, Dražić G, Mayrhofer KJJ, Kim H, Jaouen F. Energy Environ Sci, 2018, 11: 3176–3182CrossRefGoogle Scholar
  29. 29.
    Barbusinski K. Ecol Chem Eng S, 2009, 16: 347–358Google Scholar
  30. 30.
    Nandan R, Gautam A, Nanda KK. J Mater Chem A, 2017, 5: 20252–20262CrossRefGoogle Scholar
  31. 31.
    Singh D, Mamtani K, Bruening CR, Miller JT, Ozkan US. ACS Catal, 2014, 4: 3454–3462CrossRefGoogle Scholar
  32. 32.
    Hu Y, Jensen JO, Zhang W, Martin S, Chenitz R, Pan C, Xing W, Bjerrum NJ, Li Q. J Mater Chem A, 2015, 3: 1752–1760CrossRefGoogle Scholar
  33. 33.
    Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q. Angew Chem Int Ed, 2014, 53: 3675–3679CrossRefGoogle Scholar
  34. 34.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361–365CrossRefPubMedGoogle Scholar
  35. 35.
    Cui X, Yang S, Yan X, Leng J, Shuang S, Ajayan PM, Zhang Z. Adv Funct Mater, 2016, 26: 5708–5717CrossRefGoogle Scholar
  36. 36.
    Choi CH, Baldizzone C, Polymeros G, Pizzutilo E, Kasian O, Schuppert AK, Ranjbar Sahraie N, Sougrati MT, Mayrhofer KJJ, Jaouen F. ACS Catal, 2016, 6: 3136–3146CrossRefGoogle Scholar
  37. 37.
    Jia Q, Ramaswamy N, Tylus U, Strickland K, Li J, Serov A, Artyushkova K, Atanassov P, Anibal J, Gumeci C, Barton SC, Sougrati MT, Jaouen F, Halevi B, Mukerjee S. Nano Energy, 2016, 29: 65–82CrossRefGoogle Scholar
  38. 38.
    Wang N, Lu B, Li L, Niu W, Tang Z, Kang X, Chen S. ACS Catal, 2018, 8: 6827–6836CrossRefGoogle Scholar
  39. 39.
    Kramm UI, Herranz J, Larouche N, Arruda TM, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet JP. Phys Chem Chem Phys, 2012, 14: 11673–11688CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S, Yang R, Jiang Z, Su D, Liu C, Xing W. ACS Catal, 2018, 8: 2824–2832CrossRefGoogle Scholar
  41. 41.
    Zhong L, Frandsen C, Mørup S, Hu Y, Pan C, Cleemann LN, Jensen JO, Li Q. Appl Catal B-Environ, 2018, 221: 406–412CrossRefGoogle Scholar
  42. 42.
    Lefèvre M, Dodelet JP, Bertrand P. J Phys Chem B, 2002, 106: 8705–8713CrossRefGoogle Scholar
  43. 43.
    Palaniselvam T, Kashyap V, Bhange SN, Baek JB, Kurungot S. Adv Funct Mater, 2016, 26: 2150–2162CrossRefGoogle Scholar
  44. 44.
    Kim D, Li OL, Saito N. Phys Chem Chem Phys, 2014, 16: 14905–14911CrossRefPubMedGoogle Scholar
  45. 45.
    Artyushkova K, Serov A, Rojas-Carbonell S, Atanassov P. J Phys Chem C, 2015, 119: 25917–25928CrossRefGoogle Scholar
  46. 46.
    Jia Q, Liu E, Jiao L, Pann S, Mukerjee S. Adv Mater, 2018: e1805157Google Scholar
  47. 47.
    Tylus U, Jia Q, Strickland K, Ramaswamy N, Serov A, Atanassov P, Mukerjee S. J Phys Chem C, 2014, 118: 8999–9008CrossRefGoogle Scholar
  48. 48.
    Ren H, Wang Y, Yang Y, Tang X, Peng Y, Peng H, Xiao L, Lu J, Abruña HD, Zhuang L. ACS Catal, 2017, 7: 6485–6492CrossRefGoogle Scholar
  49. 49.
    Chung HT, Cullen DA, Higgins D, Sneed BT, Holby EF, More KL, Zelenay P. Science, 2017, 357: 479–484CrossRefPubMedGoogle Scholar
  50. 50.
    Pfisterer JHK, Liang Y, Schneider O, Bandarenka AS. Nature, 2017, 549: 74–77CrossRefPubMedGoogle Scholar
  51. 51.
    Fazio G, Ferrighi L, Perilli D, Di Valentin C. Int J Quantum Chem, 2016, 116: 1623–1640CrossRefGoogle Scholar
  52. 52.
    Holby EF, Zelenay P. Nano Energy, 2016, 29: 54–64CrossRefGoogle Scholar
  53. 53.
    Zheng Y, Yang DS, Kweun JM, Li C, Tan K, Kong F, Liang C, Chabal YJ, Kim YY, Cho M, Yu JS, Cho K. Nano Energy, 2016, 30: 443–449CrossRefGoogle Scholar
  54. 54.
    Chen X, Yu L, Wang S, Deng D, Bao X. Nano Energy, 2017, 32: 353–358CrossRefGoogle Scholar
  55. 55.
    Sebastián D, Serov A, Matanovic I, Artyushkova K, Atanassov P, Aricò AS, Baglio V. Nano Energy, 2017, 34: 195–204CrossRefGoogle Scholar
  56. 56.
    Yang L, Cheng D, Xu H, Zeng X, Wan X, Shui J, Xiang Z, Cao D. Proc Natl Acad Sci USA, 2018, 115: 6626–6631CrossRefPubMedGoogle Scholar
  57. 57.
    Gu W, Hu L, Li J, Wang E. Electroanalysis, 2018, 30: 1217–1228CrossRefGoogle Scholar
  58. 58.
    Wang Y, Luo E, Xiao M, Ge J, Liu C, Xing W. Sci Sin Chem, 2017, 47: 554–564CrossRefGoogle Scholar
  59. 59.
    Lim KH, Kim H. Appl Catal B-Environ, 2014, 158–159: 355–360CrossRefGoogle Scholar
  60. 60.
    Deng J, Ren P, Deng D, Yu L, Yang F, Bao X. Energy Environ Sci, 2014, 7: 1919–1923CrossRefGoogle Scholar
  61. 61.
    Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch JP, Strasser P. Nat Commun, 2015, 6: 8618CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Malko D, Kucernak A, Lopes T. Nat Commun, 2016, 7: 13285CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ohtsuka M, Kitamura F. Electrochemistry, 2015, 83: 376–380CrossRefGoogle Scholar
  64. 64.
    Kattel S, Wang G. J Mater Chem A, 2013, 1: 10790CrossRefGoogle Scholar
  65. 65.
    Ramaswamy N, Tylus U, Jia Q, Mukerjee S. J Am Chem Soc, 2013, 135: 15443–15449CrossRefPubMedGoogle Scholar
  66. 66.
    Kramm UI, Herrmann-Geppert I, Behrends J, Lips K, Fiechter S, Bogdanoff P. J Am Chem Soc, 2016, 138: 635–640CrossRefPubMedGoogle Scholar
  67. 67.
    Liang W, Chen J, Liu Y, Chen S. ACS Catal, 2014, 4: 4170–4177CrossRefGoogle Scholar
  68. 68.
    Meng H, Jaouen F, Proietti E, Lefèvre M, Dodelet JP. Electrochem Commun, 2009, 11: 1986–1989CrossRefGoogle Scholar
  69. 69.
    Han Y, Wang Y, Xu R, Chen W, Zheng L, Han A, Zhu Y, Zhang J, Zhang H, Luo J, Chen C, Peng Q, Wang D, Li Y. Energy Environ Sci, 2018, 11: 2348–2352CrossRefGoogle Scholar
  70. 70.
    Wu YJ, Wang YC, Wang RX, Zhang PF, Yang XD, Yang HJ, Li JT, Zhou Y, Zhou ZY, Sun SG. ACS Appl Mater Interfaces, 2018, 10: 14602–14613CrossRefPubMedGoogle Scholar
  71. 71.
    Xiao M, Zhang H, Chen Y, Zhu J, Gao L, Jin Z, Ge J, Jiang Z, Chen S, Liu C, Xing W. Nano Energy, 2018, 46: 396–403CrossRefGoogle Scholar
  72. 72.
    Xiao J, Xu Y, Xia Y, Xi J, Wang S. Nano Energy, 2016, 24: 121–129CrossRefGoogle Scholar
  73. 73.
    Hu Z, Guo Z, Zhang Z, Dou M, Wang F. ACS Appl Mater Interfaces, 2018, 10: 12651–12658CrossRefPubMedGoogle Scholar
  74. 74.
    Osmieri L, Escudero-Cid R, Armandi M, Monteverde Videla AHA, García Fierro JL, Ocón P, Specchia S. Appl Catal B-Environ, 2017, 205: 637–653CrossRefGoogle Scholar
  75. 75.
    Ratso S, Kruusenberg I, Käärik M, Kook M, Saar R, Kanninen P, Kallio T, Leis J, Tammeveski K. Appl Catal B-Environ, 2017, 219: 276–286CrossRefGoogle Scholar
  76. 76.
    Domínguez C, Pérez-Alonso FJ, Salam MA, Al-Thabaiti SA, Peña MA, García-García FJ, Barrio L, Rojas S. Appl Catal B-Environ, 2016, 183: 185–196CrossRefGoogle Scholar
  77. 77.
    Lee S, Kwak DH, Han SB, Lee YW, Lee JY, Choi IA, Park HS, Park JY, Park KW. ACS Catal, 2016, 6: 5095–5102CrossRefGoogle Scholar
  78. 78.
    Pascone PA, de Campos J, Meunier JL, Berk D. Appl Catal B-Environ, 2016, 193: 9–15CrossRefGoogle Scholar
  79. 79.
    Yasuda S, Furuya A, Uchibori Y, Kim J, Murakoshi K. Adv Funct Mater, 2016, 26: 738–744CrossRefGoogle Scholar
  80. 80.
    Wang B, Wang X, Zou J, Yan Y, Xie S, Hu G, Li Y, Dong A. Nano Lett, 2017, 17: 2003–2009CrossRefPubMedGoogle Scholar
  81. 81.
    Lai Q, Zheng L, Liang Y, He J, Zhao J, Chen J. ACS Catal, 2017, 7: 1655–1663CrossRefGoogle Scholar
  82. 82.
    Wei W, Shi X, Gao P, Wang S, Hu W, Zhao X, Ni Y, Xu X, Xu Y, Yan W, Ji H, Cao M. Nano Energy, 2018, 52: 29–37CrossRefGoogle Scholar
  83. 83.
    Shen H, Gracia-Espino E, Ma J, Tang H, Mamat X, Wagberg T, Hu G, Guo S. Nano Energy, 2017, 35: 9–16CrossRefGoogle Scholar
  84. 84.
    Ahn SH, Yu X, Manthiram A. Adv Mater, 2017, 29: 1606534CrossRefGoogle Scholar
  85. 85.
    Tan H, Li Y, Kim J, Takei T, Wang Z, Xu X, Wang J, Bando Y, Kang YM, Tang J, Yamauchi Y. Adv Sci, 2018, 5: 1800120CrossRefGoogle Scholar
  86. 86.
    Hu BC, Wu ZY, Chu SQ, Zhu HW, Liang HW, Zhang J, Yu SH. Energy Environ Sci, 2018, 11: 2208–2215CrossRefGoogle Scholar
  87. 87.
    Wang W, Luo J, Chen W, Li J, Xing W, Chen S. J Mater Chem A, 2016, 4: 12768–12773CrossRefGoogle Scholar
  88. 88.
    Li J, Chen S, Li W, Wu R, Ibraheem S, Li J, Ding W, Li L, Wei Z. J Mater Chem A, 2018, 6: 15504–15509CrossRefGoogle Scholar
  89. 89.
    Zhong W, Chen J, Zhang P, Deng L, Yao L, Ren X, Li Y, Mi H, Sun L. J Mater Chem A, 2017, 5: 16605–16610CrossRefGoogle Scholar
  90. 90.
    Liu Z, Sun F, Gu L, Chen G, Shang T, Liu J, Le Z, Li X, Wu HB, Lu Y. Adv Energy Mater, 2017, 7: 1701154CrossRefGoogle Scholar
  91. 91.
    Fu X, Hassan FM, Zamani P, Jiang G, Higgins DC, Choi JY, Wang X, Xu P, Liu Y, Chen Z. Nano Energy, 2017, 42: 249–256CrossRefGoogle Scholar
  92. 92.
    Sun M, Davenport D, Liu H, Qu J, Elimelech M, Li J. J Mater Chem A, 2018, 6: 2527–2539CrossRefGoogle Scholar
  93. 93.
    Wang Y, Chen W, Chen Y, Wei B, Chen L, Peng L, Xiang R, Li J, Wang Z, Wei Z. J Mater Chem A, 2018, 6: 8405–8412CrossRefGoogle Scholar
  94. 94.
    Pardo Pérez LC, Sahraie NR, Melke J, Elsässer P, Teschner D, Huang X, Kraehnert R, White RJ, Enthaler S, Strasser P, Fischer A. Adv Funct Mater, 2018, 28: 1707551CrossRefGoogle Scholar
  95. 95.
    Yang ZK, Yuan CZ, Xu AW. Nanoscale, 2018, 10: 16145–16152CrossRefPubMedGoogle Scholar
  96. 96.
    Qiao Z, Zhang H, Karakalos S, Hwang S, Xue J, Chen M, Su D, Wu G. Appl Catal B-Environ, 2017, 219: 629–639CrossRefGoogle Scholar
  97. 97.
    Yan X, Liu K, Wang T, You Y, Liu J, Wang P, Pan X, Wang G, Luo J, Zhu J. J Mater Chem A, 2017, 5: 3336–3345CrossRefGoogle Scholar
  98. 98.
    Liu L, Ci S, Bi L, Jia J, Wen Z. J Mater Chem A, 2017, 5: 14763–14774CrossRefGoogle Scholar
  99. 99.
    Wang S, He Q, Wang C, Jiang H, Wu C, Chen S, Zhang G, Song L. Small, 2018, 14: 1800128CrossRefGoogle Scholar
  100. 100.
    Cheng Q, Yang L, Zou L, Zou Z, Chen C, Hu Z, Yang H. ACS Catal, 2017, 7: 6864–6871CrossRefGoogle Scholar
  101. 101.
    Li Y, Gao J, Zhang F, Qian Q, Liu Y, Zhang G. J Mater Chem A, 2018, 6: 15523–15529CrossRefGoogle Scholar
  102. 102.
    Zhang Y, Lu L, Zhang S, Lv Z, Yang D, Liu J, Chen Y, Tian X, Jin H, Song W. J Mater Chem A, 2018, 6: 5740–5745CrossRefGoogle Scholar
  103. 103.
    Peera SG, Balamurugan J, Kim NH, Lee JH. Small, 2018, 14: 1800441CrossRefGoogle Scholar
  104. 104.
    Sun T, Xu L, Li S, Chai W, Huang Y, Yan Y, Chen J. Appl Catal B: Environ, 2016, 193: 1–8CrossRefGoogle Scholar
  105. 105.
    Wang L, Wurster P, Gazdzicki P, Roussel M, Sanchez DG, Guétaz L, Jacques PA, Gago AS, Andreas Friedrich K. J Electroanal Chem, 2018, 819: 312–321CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Laboratory of Advanced Power Sources, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  4. 4.Jilin Province Key Laboratory of Low Carbon Chemical Power SourcesChangchunChina

Personalised recommendations