Advertisement

Ligand controlled cobalt catalyzed regiodivergent 1,2-hydroboration of 1,3-dienes

  • Sihan Peng
  • Ji Yang
  • Guixia LiuEmail author
  • Zheng HuangEmail author
Communications
  • 14 Downloads

Abstract

Regiodivergent 1,2-hydroboration of 1,3-dienes with pinacolborane has been accomplished by well-defined cobalt complexes of different bidentate ligands. The iminopyridine-cobalt system is selective for Markovnikov 1,2-hydroboration to form allylboronates, while the FOXAP-cobalt (FOXAP=(S)-1-(diphenylphosphino)-2-[(S)-4-isopropyloxazolin-2-yl]ferrocene) catalyst effects the complementary anti-Markonikv 1,2-hydroboration to afford homoallyboronates with high regioselectivity.

Keywords

cobalt dienes hydroboration regiodivergent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0202900, 2015CB856600), the National Natural Science Foundation of China (21825109, 21432011, 21572255, 21732006), Chinese Academy of Sciences (XDB20000000, QYZDB-SSW-SLH016), and Science and Technology Commission Shanghai Municipality (17JC1401200).

Supplementary material

11426_2018_9418_MOESM1_ESM.pdf (2.9 mb)
Ligand Controlled Cobalt Catalyzed Regiodivergent 1,2-Hydroboration of 1,3-Dienes

References

  1. 1 (a).
    Kennedy JWJ, Hall DG. Angew Chem Int Ed, 2003, 42: 4732–4739CrossRefGoogle Scholar
  2. 1 (b).
    Diner C, Szabó KJ. J Am Chem Soc, 2017, 139: 2–14CrossRefGoogle Scholar
  3. 2 (a).
    Sugiura M, Hirano K, Kobayashi S. J Am Chem Soc, 2004, 126: 7182–7183CrossRefGoogle Scholar
  4. 2 (b).
    Lou S, Moquist PN, Schaus SE. J Am Chem Soc, 2007, 129: 15398–15404CrossRefGoogle Scholar
  5. 2 (c).
    Sasaki Y, Zhong C, Sawamura M, Ito H. J Am Chem Soc, 2010, 132: 1226–1227CrossRefGoogle Scholar
  6. 3 (a).
    Rauniyar V, Zhai H, Hall DG. J Am Chem Soc, 2008, 130: 8481–8490CrossRefGoogle Scholar
  7. 3 (b).
    Althaus M, Mahmood A, Suarez JR, Thomas SP, Aggarwal VK. J Am Chem Soc, 2010, 132: 4025–4028CrossRefGoogle Scholar
  8. 3 (c).
    Hesse MJ, Essafi S, Watson CG, Harvey JN, Hirst D, Willis CL, Aggarwal VK. Angew Chem, 2014, 126: 6259–6263CrossRefGoogle Scholar
  9. 3 (d).
    García-Ruiz C, Chen JLY, Sandford C, Feeney K, Lorenzo P, Berionni G, Mayr H, Aggarwal VK. J Am Chem Soc, 2017, 139: 15324–15327CrossRefGoogle Scholar
  10. 4.
    Shao W, Kaldas SJ, Yudin AK. Chem Sci, 2017, 8: 4431–4436CrossRefGoogle Scholar
  11. 5 (a).
    Chausset-Boissarie L, Ghozati K, LaBine E, Chen JLY, Aggarwal VK, Crudden CM. Chem Eur J, 2013, 19: 17698–17701CrossRefGoogle Scholar
  12. 5 (b).
    Gerbino DC, Mandolesi SD, Schmalz HG, Podestá JC. Eur J Org Chem, 2009, 2009(23): 3964–3972CrossRefGoogle Scholar
  13. 5 (c).
    Glasspoole BW, Ghozati K, Moir JW, Crudden CM. Chem Commun, 2012, 48: 1230–1232CrossRefGoogle Scholar
  14. 5 (d).
    Sebelius S, Olsson VJ, Wallner OA, Szabó KJ. J Am Chem Soc, 2006, 128: 8150–8151CrossRefGoogle Scholar
  15. 5 (e).
    Yamamoto Y, Takada S, Miyaura N. Chem Lett, 2006, 35: 704–705CrossRefGoogle Scholar
  16. 5 (f).
    Yamamoto Y, Takada S, Miyaura N. Chem Lett, 2006, 35: 1368–1369CrossRefGoogle Scholar
  17. 5 (g).
    Yamamoto Y, Takada S, Miyaura N, Iyama T, Tachikawa H. Organometallics, 2009, 28: 152–160CrossRefGoogle Scholar
  18. 5 (h).
    Yang Y, Buchwald SL. J Am Chem Soc, 2013, 135: 10642–10645CrossRefGoogle Scholar
  19. 6.
    Ryu I, Hirai A, Suzuki H, Sonoda N, Murai S. J Org Chem, 1990, 55: 1409–1410CrossRefGoogle Scholar
  20. 7 (a).
    Burks HE, Kliman LT, Morken JP. J Am Chem Soc, 2009, 131: 9134–9135CrossRefGoogle Scholar
  21. 7 (b).
    Farmer JL, Hunter HN, Organ MG. J Am Chem Soc, 2012, 134: 17470–17473CrossRefGoogle Scholar
  22. 7 (c).
    Ishiyama T, Yamamoto M, Miyaura N. Chem Commun, 1996, 2073–2074Google Scholar
  23. 7 (d).
    Mao L, Bertermann R, Emmert K, Szabó KJ, Marder TB. Org Lett, 2017, 19: 6586–6589CrossRefGoogle Scholar
  24. 7 (e).
    Mao L, Bertermann R, Rachor SG, Szabó KJ, Marder TB. Org Lett, 2017, 19: 6590–6593CrossRefGoogle Scholar
  25. 7 (f).
    Olsson VJ, Sebelius S, Selander N, Szabó KJ. J Am Chem Soc, 2006, 128: 4588–4589CrossRefGoogle Scholar
  26. 7 (g).
    Sebelius S, Olsson VJ, Szabó KJ. J Am Chem Soc, 2005, 127: 10478–10479CrossRefGoogle Scholar
  27. 7 (h).
    Zhou Y, Wang H, Liu Y, Zhao Y, Zhang C, Qu J. Org Chem Front, 2017, 4: 1580–1585CrossRefGoogle Scholar
  28. 8 (a).
    For some reviews, see: Burgess K, Ohlmeyer MJ. Chem Rev, 1991, 91: 1179–1191CrossRefGoogle Scholar
  29. 8 (b).
    Beletskaya I, Pelter A. Tetrahedron, 1997, 53: 4957–5026CrossRefGoogle Scholar
  30. 8 (c).
    Semba K, Fujihara T, Terao J, Tsuji Y. Tetrahedron, 2015, 71: 2183–2197CrossRefGoogle Scholar
  31. 8 (d).
    Zuo Z, Wen H, Liu G, Huang Z. Synlett, 2018, 29: 1421–1429CrossRefGoogle Scholar
  32. 8 (e).
    Chen J, Guo J, Lu Z. Chin J Chem, 2018, 36: 1075–1109CrossRefGoogle Scholar
  33. 9.
    Brown HC, Bhat KS. J Org Chem, 1986, 51: 445–449CrossRefGoogle Scholar
  34. 10 (a).
    Satoh M, Nomoto Y, Miyaura N, Suzuki A. Tetrahedron Lett, 1989, 30: 3789–3792CrossRefGoogle Scholar
  35. 10 (b).
    Wu JY, Moreau B, Ritter T. J Am Chem Soc, 2009, 131: 12915–12917CrossRefGoogle Scholar
  36. 10 (c).
    Ely RJ, Morken JP. J Am Chem Soc, 2010, 132: 2534–2535CrossRefGoogle Scholar
  37. 10 (d).
    Cao Y, Zhang Y, Zhang L, Zhang D, Leng X, Huang Z. Org Chem Front, 2014, 1: 1101–1106CrossRefGoogle Scholar
  38. 11.
    Zaidlewicz M, Meller J. Tetrahedron Lett, 1997, 38: 7279–7282CrossRefGoogle Scholar
  39. 12.
    Matsumoto Y, Hayashi T. Tetrahedron Lett, 1991, 32: 3387–3390CrossRefGoogle Scholar
  40. 13.
    Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem Eur J, 2013, 19: 7125–7132CrossRefGoogle Scholar
  41. 14 (a).
    Obligacion JV, Chirik PJ. J Am Chem Soc, 2013, 135: 19107–19110CrossRefGoogle Scholar
  42. 14 (b).
    Ibrahim AD, Entsminger SW, Fout AR. ACS Catal, 2017, 7: 3730–3734CrossRefGoogle Scholar
  43. 15 (a).
    Sasaki Y, Zhong C, Sawamura M, Ito H. J Am Chem Soc, 2010, 132: 1226–1227CrossRefGoogle Scholar
  44. 15 (b).
    Liu Y, Fiorito D, Mazet C. Chem Sci, 2018, 9: 5284–5288CrossRefGoogle Scholar
  45. 16 (a).
    For some selected examples, see: Peng D, Zhang Y, Du X, Zhang L, Leng X, Walter MD, Huang Z. J Am Chem Soc, 2013, 135: 19154–19166CrossRefGoogle Scholar
  46. 16 (b).
    Zhang L, Peng D, Leng X, Huang Z. Angew Chem Int Ed, 2013, 52: 3676–3680CrossRefGoogle Scholar
  47. 16 (c).
    Zhang L, Zuo Z, Leng X, Huang Z. Angew Chem Int Ed, 2014, 53: 2696–2700CrossRefGoogle Scholar
  48. 16 (d).
    Zhang L, Zuo Z, Wan X, Huang Z. J Am Chem Soc, 2014, 136: 15501–15504CrossRefGoogle Scholar
  49. 16 (e).
    Du X, Zhang Y, Peng D, Huang Z. Angew Chem Int Ed, 2016, 55: 6671–6675CrossRefGoogle Scholar
  50. 16 (f).
    Du X, Huang Z. ACS Catal, 2017, 7: 1227–1243CrossRefGoogle Scholar
  51. 16 (g).
    Wen H, Zhang L, Zhu S, Liu G, Huang Z. ACS Catal, 2017, 7: 6419–6425CrossRefGoogle Scholar
  52. 16 (h).
    Wen H, Wan X, Huang Z. Angew Chem Int Ed, 2018, 57: 6319–6323CrossRefGoogle Scholar
  53. 16 (i).
    Wen H, Wang K, Zhang Y, Liu G, Huang Z. ACS Catal, 2019, 9, doi: 10.1021/acscatal.8b04481Google Scholar
  54. 17.
    When chiral ligands L2, L3, L4 were used, the ee values of the allylboronate product 2a were checked by chiral HPLC, indicating low enantioselectity with 2% ee for L2, 3% ee for L3 and 22% ee for L4 Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryShanghaiChina
  2. 2.School of Physical Science and TechnologyShanghai Tech UniversityShanghaiChina

Personalised recommendations