Advertisement

Monolayer organic field-effect transistors

  • Jie Liu
  • Lang JiangEmail author
  • Wenping Hu
  • Yunqi Liu
  • Daoben Zhu
Reviews
  • 3 Downloads

Abstract

Monolayer organic field-effect transistors (OFETs) are attracting worldwide interest in device physics and novel applications due to their ultrathin active layer for two-dimensional charge transport. The monolayer films are generally prepared by thermal evaporation, the Langmuir technique or self-assembly process, etc., but their electrical performance is relatively lower than corresponding thick films. From 2011, the performance of monolayer OFETs has been boosted by using the monolayer molecular crystals (MMCs) as active channels, which opened up a new era for monolayer OFETs. In this review, recent progress of monolayer OFETs, including the preparation of monolayer films, their OFET performance and applications are summarized. Finally, perspectives of monolayer OFETs in the near future are also discussed.

Keywords

monolayer films organic field-effect transistors monolayer molecular crystals (MMCs) mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2017YFA0204704, 2016YFB0401100), the National Natural Science Foundation of China (21805284, 21873108), and the Chinese Academy of Sciences (Hundred Talents Plan and the Strategic Priority Research Program (XDB30000000, XDB12030300)).

References

  1. 1.
    Tok JBH, Bao Z. Sci China Chem, 2012, 55: 718–725CrossRefGoogle Scholar
  2. 2.
    Shen H, Di CA, Zhu D. Sci China Chem, 2017, 60: 437–449CrossRefGoogle Scholar
  3. 3.
    Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lissel F, Wang GJN, Schroeder BC, Kurosawa T, Lopez J, Katsumata T, Xu J, Zhu C, Gu X, Bae WG, Kim Y, Jin L, Chung JW, Tok JBH, Bao Z. Nature, 2016, 539: 411–415CrossRefPubMedGoogle Scholar
  4. 4.
    Huang F, Cao Y. Sci China Chem, 2017, 60: 431–432CrossRefGoogle Scholar
  5. 5.
    Hu W, Bai F, Gong X, Zhan X, Fu H, Bjornholm T. Organic Optoelectronics. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 1–507CrossRefGoogle Scholar
  6. 6.
    Wang C, Dong H, Jiang L, Hu W. Chem Soc Rev, 2018, 47: 422–500CrossRefPubMedGoogle Scholar
  7. 7.
    Klauk H. Organic Electronics: Materials, Manufacturing and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 1–428Google Scholar
  8. 8.
    Gao X, Zhao Z. Sci China Chem, 2015, 58: 947–968CrossRefGoogle Scholar
  9. 9.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267CrossRefPubMedGoogle Scholar
  10. 10.
    Liu J, Dong H, Wang Z, Ji D, Cheng C, Geng H, Zhang H, Zhen Y, Jiang L, Fu H, Bo Z, Chen W, Shuai Z, Hu W. Chem Commun, 2015, 51: 11777–11779CrossRefGoogle Scholar
  11. 11.
    Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger AJ. Nat Commun, 2015, 6: 10032CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Minemawari H, Yamada T, Matsui H, Tsutsumi J’, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364–367CrossRefPubMedGoogle Scholar
  13. 13.
    Lee BH, Hsu BBY, Patel SN, Labram J, Luo C, Bazan GC, Heeger AJ. Nano Lett, 2016, 16: 314–319CrossRefPubMedGoogle Scholar
  14. 14.
    Li Q, Wu J, Wu R, Liu Y, Chen H, Huang F, Li H. Sci China Chem, 2017, 60: 490–496CrossRefGoogle Scholar
  15. 15.
    Zhou K, Chen H, Dong H, Fang Q, Hu W. Sci China Chem, 2017, 60: 510–515CrossRefGoogle Scholar
  16. 16.
    Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv Mater, 2011, 23: 2059–2063CrossRefPubMedGoogle Scholar
  17. 17.
    Li H, Li Y, Li H, Brédas JL. Adv Funct Mater, 2017, 27: 1605715CrossRefGoogle Scholar
  18. 18.
    Wang Q, Qian J, Li Y, Zhang Y, He D, Jiang S, Wang Y, Wang X, Pan L, Wang J, Wang X, Hu Z, Nan H, Ni Z, Zheng Y, Shi Y. Adv Funct Mater, 2016, 26: 3191–3198CrossRefGoogle Scholar
  19. 19.
    Wang Q, Jiang S, Qian J, Song L, Zhang L, Zhang Y, Zhang Y, Wang Y, Wang X, Shi Y, Zheng Y, Li Y. Sci Rep, 2017, 7: 7830CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Peng B, Huang S, Zhou Z, Chan PKL. Adv Funct Mater, 2017, 27: 1700999CrossRefGoogle Scholar
  21. 21.
    Yamamura A, Watanabe S, Uno M, Mitani M, Mitsui C, Tsurumi J, Isahaya N, Kanaoka Y, Okamoto T, Takeya J. Sci Adv, 2018, 4: eaao5758CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi Y, Jiang L, Liu J, Tu Z, Hu Y, Wu Q, Yi Y, Gann E, McNeill CR, Li H, Hu W, Zhu D, Sirringhaus H. Nat Commun, 2018, 9: 2933CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    He D, Zhang Y, Wu Q, Xu R, Nan H, Liu J, Yao J, Wang Z, Yuan S, Li Y, Shi Y, Wang J, Ni Z, He L, Miao F, Song F, Xu H, Watanabe K, Taniguchi T, Xu JB, Wang X. Nat Commun, 2014, 5: 5162CrossRefPubMedGoogle Scholar
  24. 24.
    He D, Qiao J, Zhang L, Wang J, Lan T, Qian J, Li Y, Shi Y, Chai Y, Lan W, Ono LK, Qi Y, Xu JB, Ji W, Wang X. Sci Adv, 2017, 3: e1701186CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang Y, Qiao J, Gao S, Hu F, He D, Wu B, Yang Z, Xu B, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu JB, Wang X. Phys Rev Lett, 2016, 116: 016602CrossRefPubMedGoogle Scholar
  26. 26.
    Hu Y, Li G, Chen Z. IEEE Electron Device Lett, 2018, 39: 276–279CrossRefGoogle Scholar
  27. 27.
    Paloheimo J, Stubb H, Yli-Lahti P, Dyreklev P, Inganäs O. Thin Solid Films, 1992, 210–211: 283–286CrossRefGoogle Scholar
  28. 28.
    Wei Z, Xu W, Hu W, Zhu D. Langmuir, 2009, 25: 3349–3351CrossRefPubMedGoogle Scholar
  29. 29.
    Wei Z, Cao Y, Ma W, Wang C, Xu W, Guo X, Hu W, Zhu D. Appl Phys Lett, 2009, 95: 033304CrossRefGoogle Scholar
  30. 30.
    Cao Y, Wei Z, Liu S, Gan L, Guo X, Xu W, Steigerwald ML, Liu Z, Zhu D. Angew Chem Int Ed, 2010, 49: 6319–6323CrossRefGoogle Scholar
  31. 31.
    Fabiano S, Musumeci C, Chen Z, Scandurra A, Wang H, Loo YL, Facchetti A, Pignataro B. Adv Mater, 2012, 24: 951–956CrossRefPubMedGoogle Scholar
  32. 32.
    Sizov AS, Agina EV, Gholamrezaie F, Bruevich VV, Borshchev OV, Paraschuk DY, de Leeuw DM, Ponomarenko SA. Appl Phys Lett, 2013, 103: 043310CrossRefGoogle Scholar
  33. 33.
    Sizov AS, Anisimov DS, Agina EV, Borshchev OV, Bakirov AV, Shcherbina MA, Grigorian S, Bruevich VV, Chvalun SN, Paraschuk DY, Ponomarenko SA. Langmuir, 2014, 30: 15327–15334CrossRefPubMedGoogle Scholar
  34. 34.
    D’Innocenzo V, Luzio A, Abdalla H, Fabiano S, Loi MA, Natali D, Petrozza A, Kemerink M, Caironi M. J Mater Chem C, 2016, 4: 11135–11142CrossRefGoogle Scholar
  35. 35.
    Borshchev OV, Sizov AS, Agina EV, Bessonov AA, Ponomarenko SA. Chem Commun, 2017, 53: 885–888CrossRefGoogle Scholar
  36. 36.
    Agina EV, Mannanov AA, Sizov AS, Vechter O, Borshchev OV, Bakirov AV, Shcherbina MA, Chvalun SN, Konstantinov VG, Bruevich VV, Kozlov OV, Pshenichnikov MS, Paraschuk DY, Ponomarenko SA. ACS Appl Mater Interfaces, 2017, 9: 18078–18086CrossRefPubMedGoogle Scholar
  37. 37.
    Trul AA, Sizov AS, Chekusova VP, Borshchev OV, Agina EV, Shcherbina MA, Bakirov AV, Chvalun SN, Ponomarenko SA. J Mater Chem C, 2018, 6: 9649–9659CrossRefGoogle Scholar
  38. 38.
    Dinelli F, Murgia M, Levy P, Cavallini M, Biscarini F, de Leeuw DM. Phys Rev Lett, 2004, 92: 116802CrossRefPubMedGoogle Scholar
  39. 39.
    Jung S, Yao Z. Appl Phys Lett, 2005, 86: 083505CrossRefGoogle Scholar
  40. 40.
    Ruiz R, Papadimitratos A, Mayer AC, Malliaras GG. Adv Mater, 2005, 17: 1795–1798CrossRefGoogle Scholar
  41. 41.
    Park BN, Seo S, Evans PG. J Phys D-Appl Phys, 2007, 40: 3506–3511CrossRefGoogle Scholar
  42. 42.
    Huang J, Sun J, Katz HE. Adv Mater, 2008, 20: 2567–2572CrossRefGoogle Scholar
  43. 43.
    Asadi K, Wu Y, Gholamrezaie F, Rudolf P, Blom PWM. Adv Mater, 2009, 21: 4109–4114CrossRefGoogle Scholar
  44. 44.
    Liu SW, Lee CC, Tai HL, Wen JM, Lee JH, Chen CT. ACS Appl Mater Interfaces, 2010, 2: 2282–2288CrossRefGoogle Scholar
  45. 45.
    Mannebach EM, Spalenka JW, Johnson PS, Cai Z, Himpsel FJ, Evans PG. Adv Funct Mater, 2013, 23: 554–564CrossRefGoogle Scholar
  46. 46.
    Wang J, Jiang C. Org Electron, 2015, 16: 164–170CrossRefGoogle Scholar
  47. 47.
    Mottaghi M, Lang P, Rodriguez F, Rumyantseva A, Yassar A, Horowitz G, Lenfant S, Tondelier D, Vuillaume D. Adv Funct Mater, 2007, 17: 597–604CrossRefGoogle Scholar
  48. 48.
    Smits ECP, Mathijssen SGJ, van Hal PA, Setayesh S, Geuns TCT, Mutsaers KAHA, Cantatore E, Wondergem HJ, Werzer O, Resel R, Kemerink M, Kirchmeyer S, Muzafarov AM, Ponomarenko SA, de Boer B, Blom PWM, de Leeuw DM. Nature, 2008, 455: 956–959CrossRefGoogle Scholar
  49. 49.
    Hutchins DO, Acton O, Weidner T, Cernetic N, Baio JE, Ting G, Castner DG, Ma H, Jen AKY. Org Electron, 2012, 13: 464–468CrossRefGoogle Scholar
  50. 50.
    Ma H, Acton O, Hutchins DO, Cernetic N, Jen AKY. Phys Chem Chem Phys, 2012, 14: 14110–14126CrossRefPubMedGoogle Scholar
  51. 51.
    Ringk A, Li X, Gholamrezaie F, Smits ECP, Neuhold A, Moser A, Van der Marel C, Gelinck GH, Resel R, de Leeuw DM, Strohriegl P. Adv Funct Mater, 2013, 23: 2016–2023CrossRefGoogle Scholar
  52. 52.
    Jäger CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T. J Am Chem Soc, 2013, 135: 4893–4900CrossRefPubMedGoogle Scholar
  53. 53.
    Ringk A, Christian Roelofs WS, Smits ECP, van der Marel C, Salzmann I, Neuhold A, Gelinck GH, Resel R, de Leeuw DM, Strohriegl P. Org Electron, 2013, 14: 1297–1304CrossRefGoogle Scholar
  54. 54.
    Schmaltz T, Amin AY, Khassanov A, Meyer-Friedrichsen T, Steinrück HG, Magerl A, Segura JJ, Voitchovsky K, Stellacci F, Halik M. Adv Mater, 2013, 25: 4511–4514CrossRefPubMedGoogle Scholar
  55. 55.
    Sandberg HGO, Frey GL, Shkunov MN, Sirringhaus H, Friend RH, Nielsen MM, Kumpf C. Langmuir, 2002, 18: 10176–10182CrossRefGoogle Scholar
  56. 56.
    Shan L, Liu D, Li H, Xu X, Shan B, Xu JB, Miao Q. Adv Mater, 2015, 27: 3418–3423CrossRefPubMedGoogle Scholar
  57. 57.
    Defaux M, Gholamrezaie F, Wang J, Kreyes A, Ziener U, Anokhin DV, Ivanov DA, Moser A, Neuhold A, Salzmann I, Resel R, de Leeuw DM, Meskers SCJ, Moeller M, Mourran A. Adv Mater, 2012, 24: 973–978CrossRefPubMedGoogle Scholar
  58. 58.
    Chen H, Dong S, Bai M, Cheng N, Wang H, Li M, Du H, Hu S, Yang Y, Yang T, Zhang F, Gu L, Meng S, Hou S, Guo X. Adv Mater, 2015, 27: 2113–2120CrossRefPubMedGoogle Scholar
  59. 59.
    Meng Q, Zhang F, Zang Y, Huang D, Zou Y, Liu J, Zhao G, Wang Z, Ji D, Di C, Hu W, Zhu D. J Mater Chem C, 2014, 2: 1264–1269CrossRefGoogle Scholar
  60. 60.
    Arai S, Inoue S, Hamai T, Kumai R, Hasegawa T. Adv Mater, 2018, 30: 1707256CrossRefGoogle Scholar
  61. 61.
    Jeong H, Kim D, Xiang D, Lee T. ACS Nano, 2017, 11: 6511–6548CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang X, Li T. Chin Chem Lett, 2017, 28: 2058–2064CrossRefGoogle Scholar
  63. 63.
    Paloheimo J, Kuivalainen P, Stubb H, Vuorimaa E, Yli-Lahti P. Appl Phys Lett, 1990, 56: 1157–1159CrossRefGoogle Scholar
  64. 64.
    Xu G, Bao Z, Groves JT. Langmuir, 2000, 16: 1834–1841CrossRefGoogle Scholar
  65. 65.
    Scott JC, Samuel JDJ, Hou JH, Rettner CT, Miller RD. Nano Lett, 2006, 6: 2916–2919CrossRefPubMedGoogle Scholar
  66. 66.
    Fabiano S, Yoshida H, Chen Z, Facchetti A, Loi MA. ACS Appl Mater Interfaces, 2013, 5: 4417–4422CrossRefPubMedGoogle Scholar
  67. 67.
    Lo CK, Wang CY, Oosterhout SD, Zheng Z, Yi X, Fuentes-Hernandez C, So F, Coropceanu V, Brédas JL, Toney MF, Kippelen B, Reynolds JR. ACS Appl Mater Interfaces, 2018, 10: 11995–12004CrossRefPubMedGoogle Scholar
  68. 68.
    Agina EV, Usov IA, Borshchev OV, Wang J, Mourran A, Shcherbina MA, Bakirov AV, Grigorian S, Möller M, Chvalun SN, Ponomarenko SA. Langmuir, 2012, 28: 16186–16195CrossRefPubMedGoogle Scholar
  69. 69.
    Shao W, Dong H, Jiang L, Hu W. Chem Sci, 2011, 2: 590–600CrossRefGoogle Scholar
  70. 70.
    Liu D, Xu X, Su Y, He Z, Xu J, Miao Q. Angew Chem Int Ed, 2013, 52: 6222–6227CrossRefGoogle Scholar
  71. 71.
    Liu D, He Z, Su Y, Diao Y, Mannsfeld SCB, Bao Z, Xu J, Miao Q. Adv Mater, 2014, 26: 7190–7196CrossRefPubMedGoogle Scholar
  72. 72.
    Jung MC, Leyden MR, Nikiforov GO, Lee MV, Lee HK, Shin TJ, Takimiya K, Qi Y. ACS Appl Mater Interfaces, 2015, 7: 1833–1840CrossRefPubMedGoogle Scholar
  73. 73.
    Wang Q, Jiang S, Qiu L, Qian J, Ono LK, Leyden MR, Wang X, Shi Y, Zheng Y, Qi Y, Li Y. ACS Appl Mater Interfaces, 2018, 10: 22513–22519CrossRefPubMedGoogle Scholar
  74. 74.
    Heringdorf FJ, Reuter MC, Tromp RM. Nature, 2001, 412: 517–520CrossRefGoogle Scholar
  75. 75.
    Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF. J Am Chem Soc, 2004, 126: 4084–4085CrossRefPubMedGoogle Scholar
  76. 76.
    Gao J, Xu JB, Zhu M, Ke N, Ma D. J Phys D-Appl Phys, 2007, 40: 5666–5669CrossRefGoogle Scholar
  77. 77.
    Mirza M, Wang J, Li D, Arabi SA, Jiang C. ACS Appl Mater Interfaces, 2014, 6: 5679–5684CrossRefPubMedGoogle Scholar
  78. 78.
    Mirza M, Wang J, Wang L, He J, Jiang C. Org Electron, 2015, 24: 96–100CrossRefGoogle Scholar
  79. 79.
    Park B. Thin Solid Films, 2017, 627: 53–58CrossRefGoogle Scholar
  80. 80.
    Whitesides GM, Grzybowski B. Science, 2002, 295: 2418–2421CrossRefPubMedGoogle Scholar
  81. 81.
    Mas-Torrent M, Rovira C. Chem Rev, 2011, 111: 4833–4856CrossRefPubMedGoogle Scholar
  82. 82.
    DiBenedetto SA, Facchetti A, Ratner MA, Marks TJ. Adv Mater, 2009, 21: 1407–1433CrossRefGoogle Scholar
  83. 83.
    Calhoun MF, Sanchez J, Olaya D, Gershenson ME, Podzorov V. Nat Mater, 2007, 7: 84–89CrossRefPubMedGoogle Scholar
  84. 84.
    Tulevski GS, Miao Q, Fukuto M, Abram R, Ocko B, Pindak R, Steigerwald ML, Kagan CR, Nuckolls C. J Am Chem Soc, 2004, 126: 15048–15050CrossRefPubMedGoogle Scholar
  85. 85.
    Guo X, Myers M, Xiao S, Lefenfeld M, Steiner R, Tulevski GS, Tang J, Baumert J, Leibfarth F, Yardley JT, Steigerwald ML, Kim P, Nuckolls C. Proc Natl Acad Sci USA, 2006, 103: 11452–11456CrossRefPubMedGoogle Scholar
  86. 86.
    Mathijssen SGJ, Smits ECP, van Hal PA, Wondergem HJ, Ponomarenko SA, Moser A, Resel R, Bobbert PA, Kemerink M, Janssen RAJ, de Leeuw DM. Nat Nanotech, 2009, 4: 674–680CrossRefGoogle Scholar
  87. 87.
    Novak M, Ebel A, Meyer-Friedrichsen T, Jedaa A, Vieweg BF, Yang G, Voitchovsky K, Stellacci F, Spiecker E, Hirsch A, Halik M. Nano Lett, 2011, 11: 156–159CrossRefPubMedGoogle Scholar
  88. 88.
    Rumpel A, Novak M, Walter J, Braunschweig B, Halik M, Peukert W. Langmuir, 2011, 27: 15016–15023CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang F, Di C, Berdunov N, Hu Y, Hu Y, Gao X, Meng Q, Sirringhaus H, Zhu D. Adv Mater, 2013, 25: 1401–1407CrossRefPubMedGoogle Scholar
  90. 90.
    Li L, Gao P, Schuermann KC, Ostendorp S, Wang W, Du C, Lei Y, Fuchs H, De Cola L, Müllen K, Chi L. J Am Chem Soc, 2010, 132: 8807–8809CrossRefPubMedGoogle Scholar
  91. 91.
    Wu K, Li H, Li L, Zhang S, Chen X, Xu Z, Zhang X, Hu W, Chi L, Gao X, Meng Y. Langmuir, 2016, 32: 6246–6254CrossRefPubMedGoogle Scholar
  92. 92.
    Li L, Gao P, Wang W, Müllen K, Fuchs H, Chi L. Angew Chem Int Ed, 2013, 52: 12530–12535CrossRefGoogle Scholar
  93. 93.
    Wang Z, Niu X, Zhou X, Song R, Wang Z, Huang L, Chi L. Org Electron, 2018, 58: 38–45CrossRefGoogle Scholar
  94. 94.
    Shin J, Hong TR, Lee TW, Kim A, Kim YH, Cho MJ, Choi DH. Adv Mater, 2014, 26: 6031–6035CrossRefPubMedGoogle Scholar
  95. 95.
    Giri G, DeLongchamp DM, Reinspach J, Fischer DA, Richter LJ, Xu J, Benight S, Ayzner A, He M, Fang L, Xue G, Toney MF, Bao Z. Chem Mater, 2015, 27: 2350–2359CrossRefGoogle Scholar
  96. 96.
    Huang S, Peng B, Chan PKL. Adv Electron Mater, 2017, 3: 1700268CrossRefGoogle Scholar
  97. 97.
    Xu C, He P, Liu J, Cui A, Dong H, Zhen Y, Chen W, Hu W. Angew Chem Int Ed, 2016, 55: 9519–9523CrossRefGoogle Scholar
  98. 98.
    Liu X, Luo X, Nan H, Guo H, Wang P, Zhang L, Zhou M, Yang Z, Shi Y, Hu W, Ni Z, Qiu T, Yu Z, Xu JB, Wang X. Adv Mater, 2016, 28: 5200–5205CrossRefPubMedGoogle Scholar
  99. 99.
    Xu R, He D, Zhang Y, Wu B, Liu F, Meng L, Liu JF, Wu Q, Shi Y, Wang J, Nie JC, Wang X, He L. Phys Rev B, 2014, 90: 224106CrossRefGoogle Scholar
  100. 100.
    Wu B, Zhao Y, Nan H, Yang Z, Zhang Y, Zhao H, He D, Jiang Z, Liu X, Li Y, Shi Y, Ni Z, Wang J, Xu JB, Wang X. Nano Lett, 2016, 16: 3754–3759CrossRefPubMedGoogle Scholar
  101. 101.
    Zhang Y, Luo Z, Hu F, Nan H, Wang X, Ni Z, Xu J, Shi Y, Wang X. Nano Res, 2017, 10: 1336–1344CrossRefGoogle Scholar
  102. 102.
    Wan W, Sun J, Su J, Hovmöller S, Zou X. J Appl Crystlogr, 2013, 46: 1863–1873CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Liu
    • 1
  • Lang Jiang
    • 1
    Email author
  • Wenping Hu
    • 2
  • Yunqi Liu
    • 1
  • Daoben Zhu
    • 1
  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of Chemistry, School of ScienceTianjin Key Laboratory of Molecular Optoelectronic SciencesTianjinChina

Personalised recommendations