Science China Chemistry

, Volume 62, Issue 3, pp 370–377 | Cite as

Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance

  • Cunbin An
  • Jingming Xin
  • Lanlan Shi
  • Wei MaEmail author
  • Jianqi Zhang
  • Huifeng Yao
  • Sunsun Li
  • Jianhui HouEmail author


In polymer solar cells (PSCs), twisted polymer donors usually have low photovoltaic efficiencies due to their poor photoactive layer morphologies. Herein, we successfully improved twisted polymer (PBDT-3T) photovoltaic efficiency by employing C=O groups (PBDT-3TCO) to enhance intermolecular interactions. The maximum power conversion efficiency (PCE) of PBDT-3T is only 1.05%, while the PCE of PBDT-3TCO reaches 11.77% in non-fullerene (NF) PSCs. Both polymers-based PSCs show very similar open-circuit voltages but remarkable differences in their short-circuit currents and fill factors. The single crystals of both functionalized terthiophenes with methyl substituents demonstrate that the terthiophene with C=O units changes molecular pattern by forming intra/inter molecular S⋯O and O⋯H interactions but its molecular planarity does not significantly improve. Our comparative studies show that PBDT-3TCO with C=O units possesses a strong aggregation property and optimal photoactive layer morphology in NF PSCs. This study provides important insight into the design of high-performance twisted polymer donors for NF PSCs.


twisted polymer donors carbonyl group intermolecular interaction polymer solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51703228, 21835006, 21504066), the Chinese Academy of Sciences (XDB12030200), and the Ministry of Science and Technology (2016YFA0200700). X-ray data was acquired at beamlines 7.3.3 and at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Chenhui Zhu at beamline 7.3.3, and Cheng Wang at beamline for assistance with data acquisition.

Supplementary material

11426_2018_9408_MOESM1_ESM.docx (8.1 mb)
Enhanced Intermolecular Interactions to Improve Twisted Polymer Photovoltaic Performance


  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006–7043CrossRefGoogle Scholar
  3. 3.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  4. 4.
    Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209CrossRefGoogle Scholar
  5. 5.
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027CrossRefGoogle Scholar
  6. 6.
    Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011–15018CrossRefGoogle Scholar
  7. 7.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  8. 8.
    Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30: 1703973CrossRefGoogle Scholar
  9. 9.
    Xu SJ, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X. Adv Mater, 2017, 29: 1704510CrossRefGoogle Scholar
  10. 10.
    Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z’, Hou J. J Am Chem Soc, 2013, 135: 8464–8467CrossRefGoogle Scholar
  11. 11.
    Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094CrossRefGoogle Scholar
  12. 12.
    Yang B, Zhang S, Chen Y, Cui Y, Liu D, Yao H, Zhang J, Wei Z, Hou J. Macromolecules, 2017, 50: 1453–1462CrossRefGoogle Scholar
  13. 13.
    Mukherjee S, Proctor CM, Bazan GC, Nguyen TQ, Ade H. Adv Energy Mater, 2015, 5: 1500877CrossRefGoogle Scholar
  14. 14.
    Heeger AJ. Adv Mater, 2014, 26: 10–28CrossRefGoogle Scholar
  15. 15.
    Jo J, Na SI, Kim SS, Lee TW, Chung Y, Kang SJ, Vak D, Kim DY. Adv Funct Mater, 2009, 19: 2398–2406CrossRefGoogle Scholar
  16. 16.
    Lim KG, Park JM, Mangold H, Laquai F, Choi TL, Lee TW. ChemSusChem, 2015, 8: 337–344CrossRefGoogle Scholar
  17. 17.
    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128CrossRefGoogle Scholar
  18. 18.
    Liu D, Yang B, Jang B, Xu B, Zhang S, He C, Woo HY, Hou J. Energy Environ Sci, 2017, 10: 546–551CrossRefGoogle Scholar
  19. 19.
    Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734–4739CrossRefGoogle Scholar
  20. 20.
    Chen S, Liu Y, Zhang L, Chow PCY, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139: 6298–6301CrossRefGoogle Scholar
  21. 21.
    Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291–10318CrossRefGoogle Scholar
  22. 22.
    Guo X, Quinn J, Chen Z, Usta H, Zheng Y, Xia Y, Hennek JW, Ortiz RP, Marks TJ, Facchetti A. J Am Chem Soc, 2013, 135: 1986–1996CrossRefGoogle Scholar
  23. 23.
    Dai YZ, Ai N, Lu Y, Zheng YQ, Dou JH, Shi K, Lei T, Wang JY, Pei J. Chem Sci, 2016, 7: 5753–5757CrossRefGoogle Scholar
  24. 24.
    Price SC, Stuart AC, Yang L, Zhou H, You W. J Am Chem Soc, 2011, 133: 4625–4631CrossRefGoogle Scholar
  25. 25.
    Min J, Zhang ZG, Zhang S, Li Y. Chem Mater, 2012, 24: 3247–3254CrossRefGoogle Scholar
  26. 26.
    Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y. Adv Mater, 2014, 26: 2586–2591CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293CrossRefGoogle Scholar
  28. 28.
    Zhang S, Qin Y, Uddin MA, Jang B, Zhao W, Liu D, Woo HY, Hou J. Macromolecules, 2016, 49: 2993–3000CrossRefGoogle Scholar
  29. 29.
    Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089CrossRefGoogle Scholar
  30. 30.
    Chen S, Cho HJ, Lee J, Yang Y, Zhang ZG, Li Y, Yang C. Adv Energy Mater, 2017, 7: 1701125CrossRefGoogle Scholar
  31. 31.
    Wang HJ, Tzeng JY, Chou CW, Huang CY, Lee RH, Jeng RJ. Polym Chem, 2013, 4: 506–519CrossRefGoogle Scholar
  32. 32.
    Xia D, Guo X, Chen L, Baumgarten M, Keerthi A, Müllen K. Angew Chem Int Ed, 2016, 55: 941–944CrossRefGoogle Scholar
  33. 33.
    Wudarczyk J, Papamokos G, Margaritis V, Schollmeyer D, Hinkel F, Baumgarten M, Floudas G, Müllen K. Angew Chem Int Ed, 2016, 55: 3220–3223CrossRefGoogle Scholar
  34. 34.
    Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660CrossRefGoogle Scholar
  35. 35.
    Takai A, Chen Z, Yu X, Zhou N, Marks TJ, Facchetti A. Chem Mater, 2016, 28: 5772–5783CrossRefGoogle Scholar
  36. 36.
    Blanchard P, Brisset H, Illien B, Riou A, Roncali J. J Org Chem, 1997, 62: 2401–2408CrossRefGoogle Scholar
  37. 37.
    Chaloner PA, Gunatunga SR, Hitchcock PB. J Chem Soc Perkin Trans 2, 1997, 1: 1597–1604CrossRefGoogle Scholar
  38. 38.
    Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, Takimiya K. J Am Chem Soc, 2012, 134: 3498–3507CrossRefGoogle Scholar
  39. 39.
    Zhang S, Yang B, Liu D, Zhang H, Zhao W, Wang Q, He C, Hou J. Macromolecules, 2016, 49: 120–126CrossRefGoogle Scholar
  40. 40.
    Mihailetchi VD, Wildeman J, Blom PWM. Phys Rev Lett, 2005, 94: 126602CrossRefGoogle Scholar
  41. 41.
    Kyaw AKK, Wang DH, Luo C, Cao Y, Nguyen TQ, Bazan GC, Heeger AJ. Adv Energy Mater, 2014, 4: 1301469CrossRefGoogle Scholar
  42. 42.
    Min J, Luponosov YN, Gasparini N, Richter M, Bakirov AV, Shcherbina MA, Chvalun SN, Grodd L, Grigorian S, Ameri T, Ponomarenko SA, Brabec CJ. Adv Energy Mater, 2015, 5: 1500386CrossRefGoogle Scholar
  43. 43.
    Murgatroyd PN. J Phys D-Appl Phys, 1970, 3: 151–156CrossRefGoogle Scholar
  44. 44.
    Azimi H, Senes A, Scharber MC, Hingerl K, Brabec CJ. Adv Energy Mater, 2011, 1: 1162–1168CrossRefGoogle Scholar
  45. 45.
    Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207CrossRefGoogle Scholar
  46. 46.
    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38–44CrossRefGoogle Scholar
  47. 47.
    Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H. J Phys-Conf Ser, 2010, 247: 012007CrossRefGoogle Scholar
  48. 48.
    Wu Y, Wang Z, Meng X, Ma W. Prog Chem, 2017, 29: 93–101Google Scholar
  49. 49.
    Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110CrossRefGoogle Scholar
  50. 50.
    Carpenter JH, Hunt A, Ade H. J Electron Spectr Related Phenom, 2015, 200: 2–14CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cunbin An
    • 1
  • Jingming Xin
    • 2
  • Lanlan Shi
    • 1
  • Wei Ma
    • 2
    Email author
  • Jianqi Zhang
    • 3
  • Huifeng Yao
    • 1
  • Sunsun Li
    • 1
    • 4
  • Jianhui Hou
    • 1
    • 4
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  3. 3.Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations