Science China Chemistry

, Volume 62, Issue 1, pp 24–57 | Cite as

Visible light-driven organic photochemical synthesis in China

  • Yiyun ChenEmail author
  • Liang-Qiu LuEmail author
  • Da-Gang YuEmail author
  • Cheng-Jian ZhuEmail author
  • Wen-Jing XiaoEmail author
Invited Reviews


In recent years, visible light-driven organic photochemical synthesis has attracted wide research interest from academic and industrial communities due to its features of green and sustainable chemistry. In this flourishing area, Chinese chemists have devoted great efforts to different aspects of synthetic chemistry. This review will summarize their representative work according to the following categories: C–H functionalization, synthesis of aromatic aza-heterocycles, asymmetric organic photochemical synthesis, transformations of small molecules and biomolecule-compatible reactions.


visible light photochemical synthesis C–H functionalization aromatic aza-heterocycle asymmetric catalysis biomolecule-compatible reaction small molecule 


  1. 1.
    Ciamician G. Science, 1912, 36: 385–394Google Scholar
  2. 2.
    (a) Nicewicz DA, MacMillan DWC. Science, 2008, 322: 77–80Google Scholar
  3. (b).
    Ischay MA, Anzovino ME, Du J, Yoon TP. J Am Chem Soc, 2008, 130: 12886–12887Google Scholar
  4. (c).
    Narayanam JMR, Tucker JW, Stephenson CRJ. J Am Chem Soc, 2009, 131: 8756–8757Google Scholar
  5. 3.
    (a) Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew Chem Int Ed, 2015, 54: 3872–3890Google Scholar
  6. (b).
    Kärkäs MD, Porco JA Jr., Stephenson CRJ. Chem Rev, 2016, 116: 9683–9747Google Scholar
  7. (c).
    Ravelli D, Protti S, Fagnoni M. Chem Rev, 2016, 116: 9850–9913Google Scholar
  8. (d).
    Liu Q, Wu LZ. Natl Sci Rev, 2017, 4: 359–380Google Scholar
  9. (e).
    Xiao WJ, Zhou QQ, Zou YQ, Lu LQ. Angew Chem Int Ed, 2018, anie.201803102Google Scholar
  10. 4.
    Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ. Angew Chem Int Ed, 2011, 50: 7171–7175Google Scholar
  11. 5.
    Zhao G, Yang C, Guo L, Sun H, Chen C, Xia W. Chem Commun, 2012, 48: 2337–2339Google Scholar
  12. 6.
    To WP, Tong GSM, Lu W, Ma C, Liu J, Chow ALF, Che CM. Angew Chem Int Ed, 2012, 51: 2654–2657Google Scholar
  13. 7.
    Xie J, Xue Q, Jin H, Li H, Cheng Y, Zhu C. Chem Sci, 2013, 4: 1281–1286Google Scholar
  14. 8.
    Meng QY, Zhong JJ, Liu Q, Gao XW, Zhang HH, Lei T, Li ZJ, Feng K, Chen B, Tung CH, Wu LZ. J Am Chem Soc, 2013, 135: 19052–19055Google Scholar
  15. 9.
    He KH, Tan FF, Zhou CZ, Zhou GJ, Yang XL, Li Y. Angew Chem Int Ed, 2017, 56: 3080–3084Google Scholar
  16. 10.
    Xu GQ, Xu JT, Feng ZT, Liang H, Wang ZY, Qin Y, Xu PF. Angew Chem Int Ed, 2018, 57: 5110–5114Google Scholar
  17. 11.
    (a)McNally A, Prier CK, MacMillan DWC. Science, 2011, 334: 1114–1117Google Scholar
  18. (b).
    Nakajima K, Miyake Y, Nishibayashi Y. J Am Chem Soc, 2012, 134: 3338–3341Google Scholar
  19. 12.
    Zhou H, Lu P, Gu X, Li P. Org Lett, 2013, 15: 5646–5649Google Scholar
  20. 13.
    Zhang P, Xiao T, Xiong S, Dong X, Zhou L. Org Lett, 2014, 16: 3264–3267Google Scholar
  21. 14.
    Liu X, Ye X, Bureš F, Liu H, Jiang Z. Angew Chem Int Ed, 2015, 54: 11443–11447Google Scholar
  22. 15.
    Li W, Duan Y, Zhang M, Cheng J, Zhu C. Chem Commun, 2016, 52: 7596–7599Google Scholar
  23. 16.
    Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew Chem Int Ed, 2016, 55: 1872–1875Google Scholar
  24. 17.
    Xu W, Ma J, Yuan XA, Dai J, Xie J, Zhu C. Angew Chem Int Ed, 2018, 57: 10357–10361Google Scholar
  25. 18.
    Qin Q, Yu S. Org Lett, 2015, 17: 1894–1897Google Scholar
  26. 19.
    Li Y, Mao R, Wu J. Org Lett, 2017, 19: 4472–4475Google Scholar
  27. 20.
    (a) Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew Chem Int Ed, 2018, 57: 1640–1644Google Scholar
  28. (b).
    Xiao C, Xiao WJ. Sci China Chem, 2018, 61: 505–506Google Scholar
  29. 21.
    Hu A, Guo JJ, Pan H, Tang H, Gao Z, Zuo Z. J Am Chem Soc, 2018, 140: 1612–1616Google Scholar
  30. 22.
    Deng GB, Wang ZQ, Xia JD, Qian PC, Song RJ, Hu M, Gong LB, Li JH. Angew Chem Int Ed, 2013, 52: 1535–1538Google Scholar
  31. 23.
    Zhao D, Xie Z. Angew Chem Int Ed, 2016, 55: 3166–3170Google Scholar
  32. 24.
    Li GX, Morales-Rivera CA, Wang Y, Gao F, He G, Liu P, Chen G. Chem Sci, 2016, 7: 6407–6412Google Scholar
  33. 25.
    Xu P, Wang G, Zhu Y, Li W, Cheng Y, Li S, Zhu C. Angew Chem Int Ed, 2016, 55: 2939–2943Google Scholar
  34. 26.
    (a) Lévai A. J Heterocycl Chem, 2002, 39: 1–13Google Scholar
  35. (b).
    Küchenthal CH, Maison W. Synthesis, 2010: 719–740.Google Scholar
  36. (c).
    Kissane M. Maguire ARChem Soc Rev, 2010, 39: 845–883Google Scholar
  37. 27.
    Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2014, 53: 5653–5656Google Scholar
  38. 28.
    Zeng TT, Xuan J, Ding W, Wang K, Lu LQ, Xiao WJ. Org Lett, 2015, 17: 4070–4073Google Scholar
  39. 29.
    Xia XD, Xuan J, Wang Q, Lu LQ, Chen JR, Xiao WJ. Adv Synth Catal, 2014, 356: 2807–2812Google Scholar
  40. 30.
    (a) Bagal DB, Park SW, Song HJ, Chang S. Chem Commun, 2017, 53: 8798–8801Google Scholar
  41. (b).
    Zhu S, Pathigoolla A, Lowe G, Walsh DA, Cooper M, Lewis W, Lam HW. Chem Eur J, 2017, 23: 17598–17604Google Scholar
  42. (c).
    Scholz SO, Farney EP, Kim S, Bates DM, Yoon TP. Angew Chem Int Ed, 2016, 55: 2239–2242Google Scholar
  43. 31.
    Lei T, Liu WQ, Li J, Huang MY, Yang B, Meng QY, Chen B, Tung CH, Wu LZ. Org Lett, 2016, 18: 2479–2482Google Scholar
  44. 32.
    Wu CJ, Meng QY, Lei T, Zhong JJ, Liu WQ, Zhao LM, Li ZJ, Chen B, Tung CH, Wu LZ. ACS Catal, 2016, 6: 4635–4639Google Scholar
  45. 33.
    Liu WQ, Lei T, Song ZQ, Yang XL, Wu CJ, Jiang X, Chen B, Tung CH, Wu LZ. Org Lett, 2017, 19: 3251–3254Google Scholar
  46. 34.
    Cai S, Yang K, Wang DZ. Org Lett, 2014, 16: 2606–2609Google Scholar
  47. 35.
    Huang H, Li Y. J Org Chem, 2017, 82: 4449–4457Google Scholar
  48. 36.
    Liu YY, Yu XY, Chen JR, Qiao MM, Qi X, Shi DQ, Xiao WJ. Angew Chem Int Ed, 2017, 56: 9527–9531Google Scholar
  49. 37.
    Camaggi CM, Leardini R, Nanni D, Zanardi G. Tetrahedron, 1998, 54: 5587–5598Google Scholar
  50. 38.
    Jiang H, Cheng Y, Wang R, Zheng M, Zhang Y, Yu S. Angew Chem Int Ed, 2013, 52: 13289–13292Google Scholar
  51. 39.
    Tong K, Zheng T, Zhang Y, Yu S. Adv Synth Catal, 2015, 357: 3681–3686Google Scholar
  52. 40.
    (a) Sun X, Yu S. Org Lett, 2014, 16: 2938–2941Google Scholar
  53. (b).
    Cheng Y, Jiang H, Zhang Y, Yu S. Org Lett, 2013, 15: 5520–5523Google Scholar
  54. (c).
    Jiang H, Cheng Y, Wang R, Zhang Y, Yu S. Chem Commun, 2014, 50: 6164–6167Google Scholar
  55. 41.
    Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew Chem Int Ed, 2015, 54: 4055–4059Google Scholar
  56. 42.
    (a) Fu W, Zhu M, Xu F, Fu Y, Xu C, Zou D. RSC Adv, 2014, 4: 17226–17229Google Scholar
  57. (b).
    Cheng Y, Yuan X, Jiang H, Wang R, Ma J, Zhang Y, Yu S. Adv Synth Catal, 2014, 356: 2859–2866Google Scholar
  58. 43.
    Sun X, Wang W, Li Y, Ma J, Yu S. Org Lett, 2016, 18: 4638–4641Google Scholar
  59. 44.
    Xiao T, Li L, Xie Y, Mao ZW, Zhou L. Org Lett, 2016, 18: 1004–1007Google Scholar
  60. 45.
    Xia XF, Zhang GW, Wang D, Zhu SL. J Org Chem, 2017, 82: 8455–8463Google Scholar
  61. 46.
    Tian WF, Wang DP, Wang SF, He KH, Cao XP, Li Y. Org Lett, 2018, 20: 1421–1425Google Scholar
  62. 47.
    Dong W, Hu B, Gao X, Li Y, Xie X, Zhang Z. J Org Chem, 2016, 81: 8770–8776Google Scholar
  63. 48.
    Dong W, Yuan Y, Hu B, Gao X, Gao H, Xie X, Zhang Z. Org Lett, 2018, 20: 80–83Google Scholar
  64. 49.
    Wang K, Meng LG, Wang L. Org Lett, 2017, 19: 1958–1961Google Scholar
  65. 50.
    Deng QH, Zou YQ, Lu LQ, Tang ZL, Chen JR, Xiao WJ. Chem Asian J, 2014, 9: 2432–2435Google Scholar
  66. 51.
    Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org Lett, 2017, 19: 1994–1997Google Scholar
  67. 52.
    Fan XW, Lei T, Zhou C, Meng QY, Chen B, Tung CH, Wu LZ. J Org Chem, 2016, 81: 7127–7133Google Scholar
  68. 53.
    Hu XQ, Qi X, Chen JR, Zhao QQ, Wei Q, Lan Y, Xiao WJ. Nat Commun, 2016, 7: 11188–11199Google Scholar
  69. 54.
    Cheng Y, Yang J, Qu Y, Li P. Org Lett, 2012, 14: 98–101Google Scholar
  70. 55.
    Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian JX, Wu LZ, Lei A. J Am Chem Soc, 2015, 137: 9273–9280Google Scholar
  71. 56.
    Wang L, Ma ZG, Wei XJ, Meng QY, Yang DT, Du SF, Chen ZF, Wu LZ, Liu Q. Green Chem, 2014, 16: 3752–3757Google Scholar
  72. 57.
    Liu Y, Wang B, Qiao X, Tung CH, Wang Y. ACS Catal, 2017, 7: 4093–4099Google Scholar
  73. 58.
    Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew Chem Int Ed, 2014, 53: 502–506Google Scholar
  74. 59.
    Feng ZJ, Xuan J, Xia XD, Ding W, Guo W, Chen JR, Zou YQ, Lu LQ, Xiao WJ. Org Biomol Chem, 2014, 12: 2037–2040Google Scholar
  75. 60.
    Wei G, Zhang C, Bureš F, Ye X, Tan CH, Jiang Z. ACS Catal, 2016, 6: 3708–3712Google Scholar
  76. 61.
    Liu Y, Li J, Ye X, Zhao X, Jiang Z. Chem Commun, 2016, 52: 13955–13958Google Scholar
  77. 62.
    Yang Q, Zhang L, Ye C, Luo S, Wu LZ, Tung CH. Angew Chem Int Ed, 2017, 56: 3694–3698Google Scholar
  78. 63.
    Zhang T, Liang W, Huang Y, Li X, Liu Y, Yang B, He C, Zhou X, Zhang J. Chem Commun, 2017, 53: 12536–12539Google Scholar
  79. 64.
    (a) Zhu Y, Zhang L, Luo S. J Am Chem Soc, 2014, 136: 14642–14645Google Scholar
  80. (b).
    Wang D, Zhang L, Luo S. Org Lett, 2017, 19: 4924–4927Google Scholar
  81. 65.
    Ding W, Zhou QQ, Xuan J, Li TR, Lu LQ, Xiao WJ. Tetrahedron Lett, 2014, 55: 4648–4652Google Scholar
  82. 66.
    Yang Z, Li H, Li S, Zhang MT, Luo S. Org Chem Front, 2017, 4: 1037–1041Google Scholar
  83. 67.
    Li JT, Kong MM, Qiao BK, Lee R, Zhao XW, Jiang ZY. Nat Com, 2018, 9: 2455–2463Google Scholar
  84. 68.
    Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J Am Chem Soc, 2018, 140: 6083–6087Google Scholar
  85. 69.
    Lin L, Bai X, Ye X, Zhao X, Tan CH, Jiang Z. Angew Chem Int Ed, 2017, 56: 13842–13846Google Scholar
  86. 70.
    (a) Hopkinson MN, Sahoo B, Li JL, Glorius F. Chem Eur J, 2014, 20: 3874–3886Google Scholar
  87. (b).
    Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074Google Scholar
  88. (c).
    Levin MD, Kim S, Toste FD. ACS Cent Sci, 2016, 2: 293–301Google Scholar
  89. (d).
    Wu J, Li J, Li H, Zhu C. Chin J Org Chem, 2017, 37: 2203–2210Google Scholar
  90. 71.
    Ding W, Lu LQ, Zhou QQ, Wei Y, Chen JR, Xiao WJ. J Am Chem Soc, 2017, 139: 63–66Google Scholar
  91. 72.
    (a) Lian M, Li Z, Cai Y, Meng Q, Gao Z. Chem Asian J, 2012, 7: 2019–2023Google Scholar
  92. (b).
    Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. J Org Chem, 2016, 81: 7042–7050Google Scholar
  93. 73.
    Liu J, Ding W, Zhou QQ, Liu D, Lu LQ, Xiao WJ. Org Lett, 2018, 20: 461–464Google Scholar
  94. 74.
    Wang D, Zhu N, Chen P, Lin Z, Liu G. J Am Chem Soc, 2017, 139: 15632–15635Google Scholar
  95. 75.
    Li MM, Wei Y, Liu J, Chen HW, Lu LQ, Xiao WJ. J Am Chem Soc, 2017, 139: 14707–14713Google Scholar
  96. 76.
    Aresta M. Carbon Dioxide As Chemical Feedstock. Weinheim: Wiley-VCH, 2010Google Scholar
  97. 77.
    (a) Tazuke S, Kazama S, Kitamura N. J Org Chem, 1986, 51: 4548–4553Google Scholar
  98. (b).
    Nikolaitchik AV, Rodgers MAJ, Neckers DC. J Org Chem, 1996, 61: 1065–1072Google Scholar
  99. (c).
    Chateauneuf JE, Zhang J, Foote J, Brink J, Perkovic MW. Adv Environ Res, 2002, 6: 487–493Google Scholar
  100. (d).
    Seo H, Liu A, Jamison TF. J Am Chem Soc, 2017, 139: 13969–13972Google Scholar
  101. 78.
    (a) Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Chem Commun, 2017, 53: 3098–3101Google Scholar
  102. (b).
    Yatham VR, Shen Y, Martin R. Angew Chem Int Ed, 2017, 56: 10915–10919Google Scholar
  103. 79.
    Ye JH, Miao M, Huang H, Yan SS, Yin ZB, Zhou WJ, Yu DG. Angew Chem Int Ed, 2017, 56: 15416–15420Google Scholar
  104. 80.
    Meng QY, Wang S, Huff GS, König B. J Am Chem Soc, 2018, 140: 3198–3201Google Scholar
  105. 81.
    (a) Ju T, Fu Q, Ye JH, Zhang Z, Liao LL, Yan SS, Tian XY, Luo SP, Li J, Yu DG. Angew Chem Int Ed, 2018, 57: 13897–13901Google Scholar
  106. (b).
    Zhang Z, Zhu CJ, Miao M, Han JL, Ju T, Song L, Ye JH, Li J, Yu DG. Chin J Chem, 2018, 36: 430–436Google Scholar
  107. 82.
    Wang MY, Cao Y, Liu X, Wang N, He LN, Li SH. Green Chem, 2017, 19: 1240–1244Google Scholar
  108. 83.
    Yin ZB, Ye JH, Zhou WJ, Zhang YH, Ding L, Gui YY, Yan SS, Li J, Yu DG. Org Lett, 2018, 20: 190–193Google Scholar
  109. 84.
    Sun L, Ye JH, Zhou WJ, Zeng X, Yu DG. Org Lett, 2018, 20: 3049–3052Google Scholar
  110. 85.
    (a) Correa A, Martin R. J Am Chem Soc, 2009, 131: 15974–15975Google Scholar
  111. (b).
    Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y. J Am Chem Soc, 2012, 134: 9106–9109Google Scholar
  112. (c).
    León T, Correa A, Martin R. J Am Chem Soc, 2013, 135: 1221–1224Google Scholar
  113. (d).
    Tran-Vu H, Daugulis O. ACS Catal, 2013, 3: 2417–2420Google Scholar
  114. (e).
    Liu Y, Cornella J, Martin R. J Am Chem Soc, 2014, 136: 11212–11215Google Scholar
  115. (f).
    Börjesson M, Moragas T, Martin R. J Am Chem Soc, 2016, 138: 7504–7507Google Scholar
  116. 86.
    Hou J, Ee A, Feng W, Xu JH, Zhao Y, Wu J. J Am Chem Soc, 2018, 140: 5257–5263Google Scholar
  117. 87.
    (a) Wu XF, Neumann H, Beller M. Chem Soc Rev, 2011, 40: 4986–5009Google Scholar
  118. (b).
    Fusano A, Sumino S, Nishitani S, Inouye T, Morimoto K, Fukuyama T, Ryu I. Chem Eur J, 2012, 18: 9415–9422Google Scholar
  119. (c).
    Sumino S, Fusano A, Fukuyama T, Ryu I. Acc Chem Res, 2014, 47: 1563–1574Google Scholar
  120. (d).
    Peng JB, Qi X, Wu XF. ChemSusChem, 2016, 9: 2279–2283Google Scholar
  121. (e).
    Li Y, Hu Y, Wu XF. Chem Soc Rev, 2018, 47: 172–194Google Scholar
  122. 88.
    Zhong WH, Cui YN, Li SM, Jia YP, Yin JM. Chin Chem Lett, 2012, 23: 29–32Google Scholar
  123. 89.
    Guo W, Lu LQ, Wang Y, Wang YN, Chen JR, Xiao WJ. Angew Chem Int Ed, 2015, 54: 2265–2269Google Scholar
  124. 90.
    Majek M, von Wangelin AJ. Angew Chem Int Ed, 2015, 54: 2270–2274Google Scholar
  125. 91.
    (a) Gu L, Jin C, Liu J. Green Chem, 2015, 17: 3733–3736Google Scholar
  126. (b).
    Zhang HT, Gu LJ, Huang XZ, Wang R, Jin C, Li GP. Chin Chem Lett, 2016, 27: 256–260Google Scholar
  127. 92.
    Zhou QQ, Guo W, Ding W, Wu X, Chen X, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2015, 54: 11196–11199Google Scholar
  128. 93.
    Li X, Liang D, Huang W, Zhou H, Li Z, Wang B, Ma Y, Wang H. Tetrahedron, 2016, 72: 8442–8448Google Scholar
  129. 94.
    Liu K, Zou M, Lei A. J Org Chem, 2016, 81: 7088–7092Google Scholar
  130. 95.
    Hu A, Guo JJ, Pan H, Zuo Z. Science, 2018, 361: 668–672Google Scholar
  131. 96.
    Fancy DA, Kodadek T. Proc Natl Acad Sci USA, 1999, 96: 6020–6024Google Scholar
  132. 97.
    Hu C, Chen Y. Tetrahedron Lett, 2015, 56: 884–888Google Scholar
  133. 98.
    Chen Y, Kamlet AS, Steinman JB, Liu DR. Nat Chem, 2011, 3: 146–153Google Scholar
  134. 99.
    Huang H, Zhang G, Gong L, Zhang S, Chen Y. J Am Chem Soc, 2014, 136: 2280–2283Google Scholar
  135. 100.
    Yang J, Zhang J, Qi L, Hu C, Chen Y. Chem Commun, 2015, 51: 5275–5278Google Scholar
  136. 101.
    Hu C, Chen Y. Org Chem Front, 2015, 2: 1352–1355Google Scholar
  137. 102.
    Wang H, Tao J, Cai X, Chen W, Zhao Y, Xu Y, Yao W, Zeng J, Wan Q. Chem Eur J, 2014, 20: 17319–17323Google Scholar
  138. 103.
    Huang H, Jia K, Chen Y. Angew Chem Int Ed, 2015, 54: 1881–1884Google Scholar
  139. 104.
    Huang H, Zhang G, Chen Y. Angew Chem Int Ed, 2015, 54: 7872–7876Google Scholar
  140. 105.
    Mao RZ, Xiong DC, Guo F, Li Q, Duan J, Ye XS. Org Chem Front, 2016, 3: 737–743Google Scholar
  141. 106.
    Yu Y, Xiong DC, Mao RZ, Ye XS. J Org Chem, 2016, 81: 7134–7138Google Scholar
  142. 107.
    Zhao G, Kaur S, Wang T. Org Lett, 2017, 19: 3291–3294Google Scholar
  143. 108.
    Zhao G, Wang T. Angew Chem Int Ed, 2018, 57: 6120–6124Google Scholar
  144. 109.
    Zhang M, Xie J, Zhu C. Nat Commun, 2018, 9: 3517–3526Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of ChemistryCentral China Normal UniversityWuhanChina
  3. 3.Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan UniversityChengduChina
  4. 4.State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations