Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery

  • Pingwei Cai
  • Xinxin Peng
  • Junheng Huang
  • Jingchun Jia
  • Xiang Hu
  • Zhenhai WenEmail author


We report a relatively low-temperature molten salt strategy to prepare hollow structured N-doped noble carbon (h-NNC) with highly desirable features of ultra-large surface area (1957 m2 g−1) and high graphitization, endowing the h-NNC with high activity toward catalysis of oxygen reduction reaction in acidic medium. The h-NNC is applied as cathode catalyst of an asymmetrical-electrolyte Zn-air battery, which exhibits an open circuit voltage of 2.11 V, a power density up to 270 mW cm−2, and an energy density of 1279 W h kg−1, behaving advantages over the conventional Zn-air batteries.


noble carbon oxygen reduction reaction asymmetric-electrolyte Zn-air battery energy density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the 1000 Plan Professorship for Young Talents, Hundred Talents Program of Fujian Province, the Fujian Science and Technology Key Project (2016H0043), and the National Natural Science Foundation of China (21703249, 21701175).

Supplementary material

11426_2018_9395_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 228 KB.


  1. 1.
    Li Y, Dai H. Chem Soc Rev, 2014, 43: 5257–5275CrossRefGoogle Scholar
  2. 2.
    Lee JS, Tai Kim S, Cao R, Choi NS, Liu M, Lee KT, Cho J. Adv Energy Mater, 2011, 1: 34–50CrossRefGoogle Scholar
  3. 3.
    Zhang J, Zhao Z, Xia Z, Dai L. Nat Nanotech, 2015, 10: 444–452CrossRefGoogle Scholar
  4. 4.
    Lee DU, Choi JY, Feng K, Park HW, Chen Z. Adv Energy Mater, 2014, 4: 1301389CrossRefGoogle Scholar
  5. 5.
    Cao R, Lee JS, Liu M, Cho J. Adv Energy Mater, 2012, 2: 816–829CrossRefGoogle Scholar
  6. 6.
    Cheng F, Chen J. Chem Soc Rev, 2012, 41: 2172–2192CrossRefGoogle Scholar
  7. 7.
    Wang ZL, Xu D, Xu JJ, Zhang XB. Chem Soc Rev, 2014, 43: 7746–7786CrossRefGoogle Scholar
  8. 8.
    Li L, Liu C, He G, Fan D, Manthiram A. Energy Environ Sci, 2015, 8: 3274–3282CrossRefGoogle Scholar
  9. 9.
    Cai P, Li Y, Chen J, Jia J, Wang G, Wen Z. ChemElectroChem, 2018, 5: 589–592CrossRefGoogle Scholar
  10. 10.
    Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. J Am Chem Soc, 2013, 135: 10274–10277CrossRefGoogle Scholar
  11. 11.
    Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q, Samad L, Wang X, Wang Y, Zhang Z, Zhang P, Cao X, Song B, Jin S. J Am Chem Soc, 2016, 138: 7965–7972CrossRefGoogle Scholar
  12. 12.
    Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H. Chem Rev, 2015, 115: 3433–3467CrossRefGoogle Scholar
  13. 13.
    Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. J Am Chem Soc, 2017, 139: 14143–14149CrossRefGoogle Scholar
  14. 14.
    Ma J, Xiang Z, Zhang J. Sci China Chem, 2018, 61: 592–597CrossRefGoogle Scholar
  15. 15.
    Liu X, Park M, Kim MG, Gupta S, Wang X, Wu G, Cho J. Nano Energy, 2016, 20: 315–325CrossRefGoogle Scholar
  16. 16.
    Sun M, Zhang G, Liu H, Liu Y, Li J. Sci China Mater, 2015, 58: 683–692CrossRefGoogle Scholar
  17. 17.
    Cai P, Hong Y, Ci S, Wen Z. Nanoscale, 2016, 8: 20048–20055CrossRefGoogle Scholar
  18. 18.
    Yan D, Guo L, Xie C, Wang Y, Li Y, Li H, Wang S. Sci China Mater, 2018, 61: 679–685CrossRefGoogle Scholar
  19. 19.
    Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J. Angew Chem Int Ed, 2013, 52: 2474–2477CrossRefGoogle Scholar
  20. 20.
    Yi QF, Zhang YH, Liu XP, Yang YH. Sci China Chem, 2014, 57: 739–747CrossRefGoogle Scholar
  21. 21.
    Wen Z, Ci S, Zhang F, Feng X, Cui S, Mao S, Luo S, He Z, Chen J. Adv Mater, 2012, 24: 1399–1404CrossRefGoogle Scholar
  22. 22.
    Zhang G, Jin X, Li H, Wang L, Hu C, Sun X. Sci China Mater, 2016, 59: 337–347Google Scholar
  23. 23.
    Zhou YX, Yao HB, Wang Y, Liu HL, Gao MR, Shen PK, Yu SH. Chem Eur J, 2010, 16: 12000–12007CrossRefGoogle Scholar
  24. 24.
    Miura A, Rosero-Navarro C, Masubuchi Y, Higuchi M, Kikkawa S, Tadanaga K. Angew Chem Int Ed, 2016, 55: 7963–7967CrossRefGoogle Scholar
  25. 25.
    Liang HW, Wei W, Wu ZS, Feng X, Müllen K. J Am Chem Soc, 2013, 135: 16002–16005CrossRefGoogle Scholar
  26. 26.
    Wu G, More KL, Johnston CM, Zelenay P. Science, 2011, 332: 443–447CrossRefGoogle Scholar
  27. 27.
    Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760–764CrossRefGoogle Scholar
  28. 28.
    Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K. Angew Chem Int Ed, 2014, 53: 1570–1574CrossRefGoogle Scholar
  29. 29.
    Elumeeva K, Fechler N, Fellinger TP, Antonietti M. Mater Horiz, 2014, 1: 588–594CrossRefGoogle Scholar
  30. 30.
    Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Nat Commun, 2014, 5: 4973CrossRefGoogle Scholar
  31. 31.
    Wu G, Zelenay P. Acc Chem Res, 2013, 46: 1878–1889CrossRefGoogle Scholar
  32. 32.
    Malko D, Kucernak A, Lopes T. J Am Chem Soc, 2016, 138: 16056–16068CrossRefGoogle Scholar
  33. 33.
    Ryoo R, Joo SH, Kruk M, Jaroniec M. Adv Mater, 2001, 13: 677–681CrossRefGoogle Scholar
  34. 34.
    Liang C, Li Z, Dai S. Angew Chem Int Ed, 2008, 47: 3696–3717CrossRefGoogle Scholar
  35. 35.
    Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji ARO, Kittrell C, Hauge RH, Tour JM. Nat Commun, 2012, 3: 1225CrossRefGoogle Scholar
  36. 36.
    Lv R, Cui T, Jun MS, Zhang Q, Cao A, Su DS, Zhang Z, Yoon SH, Miyawaki J, Mochida I, Kang F. Adv Funct Mater, 2011, 21: 999–1006CrossRefGoogle Scholar
  37. 37.
    Huang W, Wang Y, Luo G, Wei F. Carbon, 2003, 41: 2585–2590CrossRefGoogle Scholar
  38. 38.
    Wen Z, Ci S, Hou Y, Chen J. Angew Chem Int Ed, 2014, 53: 6496–6500CrossRefGoogle Scholar
  39. 39.
    Antonietti M, Oschatz M. Adv Mater, 2018, 30: 1706836CrossRefGoogle Scholar
  40. 40.
    Men Y, Siebenbürger M, Qiu X, Antonietti M, Yuan J. J Mater Chem A, 2013, 1: 11887–11893CrossRefGoogle Scholar
  41. 41.
    Kuhn P, Thomas A, Antonietti M. Macromolecules, 2008, 42: 319–326CrossRefGoogle Scholar
  42. 42.
    Kuhn P, Forget A, Su D, Thomas A, Antonietti M. J Am Chem Soc, 2008, 130: 13333–13337CrossRefGoogle Scholar
  43. 43.
    Liu X, Fechler N, Antonietti M. Chem Soc Rev, 2013, 42: 8237–8265CrossRefGoogle Scholar
  44. 44.
    Lin L, Ou H, Zhang Y, Wang X. ACS Catal, 2016, 6: 3921–3931CrossRefGoogle Scholar
  45. 45.
    Ding Y, Tang Y, Yang L, Zeng Y, Yuan J, Liu T, Zhang S, Liu C, Luo S. J Mater Chem A, 2016, 4: 14307–14315CrossRefGoogle Scholar
  46. 46.
    Ahn SH, Yu X, Manthiram A. Adv Mater, 2017, 29: 1606534CrossRefGoogle Scholar
  47. 47.
    Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L. Angew Chem Int Ed, 2015, 55: 2230–2234CrossRefGoogle Scholar
  48. 48.
    Yang W, Liu X, Yue X, Jia J, Guo S. J Am Chem Soc, 2015, 137: 1436–1439CrossRefGoogle Scholar
  49. 49.
    Song H, Yang L, Tang Y, Yan D, Liu C, Luo S. Chem Eur J, 2015, 21: 16631–16638CrossRefGoogle Scholar
  50. 50.
    Liu Q, Wang Y, Dai L, Yao J. Adv Mater, 2016, 28: 3000–3006CrossRefGoogle Scholar
  51. 51.
    Zhang J, Zhou H, Zhu J, Hu P, Hang C, Yang J, Peng T, Mu S, Huang Y. ACS Appl Mater Interfaces, 2017, 9: 24545–24554CrossRefGoogle Scholar
  52. 52.
    Park J, Park M, Nam G, Lee J, Cho J. Adv Mater, 2015, 27: 1396–1401CrossRefGoogle Scholar
  53. 53.
    Cai P, Ci S, Zhang E, Shao P, Cao C, Wen Z. Electrochim Acta, 2016, 220: 354–362CrossRefGoogle Scholar
  54. 54.
    Wu X, Han X, Ma X, Zhang W, Deng Y, Zhong C, Hu W. ACS Appl Mater Interfaces, 2017, 9: 12574–12583CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pingwei Cai
    • 1
    • 2
  • Xinxin Peng
    • 1
    • 2
  • Junheng Huang
    • 1
  • Jingchun Jia
    • 1
  • Xiang Hu
    • 1
  • Zhenhai Wen
    • 1
    Email author
  1. 1.CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  2. 2.University of Chinese Academy of ScienceBeijingChina

Personalised recommendations