Advertisement

Science China Chemistry

, Volume 62, Issue 1, pp 74–79 | Cite as

Copper catalyzed/mediated direct B–H alkenylation/alkynylation in carboranes

  • Yu Chen
  • Yik Ki Au
  • Yangjian QuanEmail author
  • Zuowei XieEmail author
Articles

Abstract

Base metal catalyzed regioselective cage B–H functionalization has been achieved. Under the assistance of a bidentate directing group, Cu-catalyzed [4+2] annulation of carboranyl amides with internal alkynes affords unprecedented C,B-substituted carborane-fused-pyridone derivatives, whereas the use of terminal alkynes leads to B–H/C(sp)–H dehydrocoupling products. The isolation and structural identification of a notably stable Cu(I) intermediate shed light on the reaction mechanism, which is proposed to involve a Cu(III) intermediate.

Keywords

[4+2] annulation alkynylation B−H activation base metal catalysis carborane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Research Grants Council of The Hong Kong Special Administration Region (14304115, 14305017), CUHK Direct Grant and Incentive Grant from Faculty of Science, CUHK.

Supplementary material

11426_2018_9388_MOESM1_ESM.pdf (24.4 mb)
Copper catalyzed/mediated direct B–H alkenylation/alkynylation in carboranes

References

  1. 1.
    Dailler D, Danoun G, Baudoin O. Applications of catalytic organometallic C(sp3)–H bond functionalization. In: Dixneuf PH, Doucet H, Eds. Topics in Organometallic Chemistry: C−H Bond Activation and Catalytic Functionalization II. Cham: Springer International Publishing, 2016. 133–154Google Scholar
  2. 2.
    Maes J, Mitchell EA, Maes BUW. Base metals in catalysis: from zero to hero. In: Summerton L, Sneddon HF, Jones LC, Clark JH, Eds. Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry. Cambridge: Royal Society of Chemistry, 2016. 192–202Google Scholar
  3. 3.
    Shang R, Ilies L, Nakamura E. Chem Rev, 2017, 117: 9086–9139CrossRefGoogle Scholar
  4. 4.
    Chirik PJ. Acc Chem Res, 2015, 48: 1687–1695CrossRefGoogle Scholar
  5. 5.
    Ortiz de Montellano PR. Cytochrome P450: Structure, Mechanism, and Biochemistry. Cham: Springer International Publishing, 2015Google Scholar
  6. 6.
    Guo XX, Gu DW, Wu Z, Zhang W. Chem Rev, 2015, 115: 1622–1651CrossRefGoogle Scholar
  7. 7.
    Rao WH, Shi BF. Org Chem Front, 2016, 3: 1028–1047CrossRefGoogle Scholar
  8. 8.
    Daugulis O, Roane J, Tran LD. Acc Chem Res, 2015, 48: 1053–1064CrossRefGoogle Scholar
  9. 9.
    Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder TB. Chem Rev, 2016, 116: 9091–9161CrossRefGoogle Scholar
  10. 10.
    Schiffner JA, Müther K, Oestreich M. Angew Chem Int Ed, 2010, 49: 1194–1196CrossRefGoogle Scholar
  11. 11.
    Quan Y, Qiu Z, Xie Z. Chem Eur J, 2018, 24: 2795–2805CrossRefGoogle Scholar
  12. 12.
    Grimes RN. Carboranes. 3rd ed. Oxford: Elsevier, 2016. 283–502CrossRefGoogle Scholar
  13. 13.
    Hosmane NS. Boron Science: New Technologies and Applications. Boca Raton: Taylor & Francis Books/CRC, 2011. 147–277CrossRefGoogle Scholar
  14. 14.
    Poater J, Solà M, Viñas C, Teixidor F. Angew Chem Int Ed, 2014, 53: 12191–12195CrossRefGoogle Scholar
  15. 15.
    Hawthorne MF. Angew Chem Int Ed Engl, 1993, 32: 950–984CrossRefGoogle Scholar
  16. 16.
    Hawthorne MF, Maderna A. Chem Rev, 1999, 99: 3421–3434CrossRefGoogle Scholar
  17. 17.
    Armstrong AF, Valliant JF. Dalton Trans, 2007, 1: 4240CrossRefGoogle Scholar
  18. 18.
    Issa F, Kassiou M, Rendina LM. Chem Rev, 2011, 111: 5701–5722CrossRefGoogle Scholar
  19. 19.
    Scholz M, Hey-Hawkins E. Chem Rev, 2011, 111: 7035–7062CrossRefGoogle Scholar
  20. 20.
    Jude H, Disteldorf H, Fischer S, Wedge T, Hawkridge AM, Arif AM, Hawthorne MF, Muddiman DC, Stang PJ. J Am Chem Soc, 2005, 127: 12131–12139CrossRefGoogle Scholar
  21. 21.
    Koshino M, Tanaka T, Solin N, Suenaga K, Isobe H, Nakamura E. Science, 2007, 316: 853CrossRefGoogle Scholar
  22. 22.
    Dash BP, Satapathy R, Gaillard ER, Maguire JA, Hosmane NS. J Am Chem Soc, 2010, 132: 6578–6587CrossRefGoogle Scholar
  23. 23.
    Kung CW, Otake K, Buru CT, Goswami S, Cui Y, Hupp JT, Spokoyny AM, Farha OK. J Am Chem Soc, 2018, 140: 3871–3875CrossRefGoogle Scholar
  24. 24.
    Villagomez CJ, Sasaki T, Tour JM, Grill L. J Am Chem Soc, 2010, 132: 16848–16854CrossRefGoogle Scholar
  25. 25.
    Qian EA, Wixtrom AI, Axtell JC, Saebi A, Jung D, Rehak P, Han Y, Moully EH, Mosallaei D, Chow S, Messina MS, Wang JY, Royappa AT, Rheingold AL, Maynard HD, Král P, Spokoyny AM. Nat Chem, 2017, 9: 333–340CrossRefGoogle Scholar
  26. 26.
    Saha A, Oleshkevich E, Vinas C, Teixidor F. Adv Mater, 2017, 29: 1704238CrossRefGoogle Scholar
  27. 27.
    Cioran AM, Musteti AD, Teixidor F, Krpetić Ž, Prior IA, He Q, Kiely CJ, Brust M, Viñas C. J Am Chem Soc, 2012, 134: 212–221CrossRefGoogle Scholar
  28. 28.
    Mukherjee S, Thilagar P. Chem Commun, 2016, 52: 1070–1093CrossRefGoogle Scholar
  29. 29.
    Núñez R, Tarrés M, Ferrer-Ugalde A, de Biani FF, Teixidor F. Chem Rev, 2016, 116: 14307–14378CrossRefGoogle Scholar
  30. 30.
    Li X, Yan H, Zhao Q. Chem Eur J, 2016, 22: 1888–1898CrossRefGoogle Scholar
  31. 31.
    Hosmane NS, Maguire JA. In: Crabtree RH, Mingos DMP, Eds. Comprehensive Organometallic Chemistry III. Oxford: Elsevier, 2007. 175–264Google Scholar
  32. 32.
    Xie Z. Acc Chem Res, 2003, 36: 1–9CrossRefGoogle Scholar
  33. 33.
    Yao ZJ, Jin GX. Coordin Chem Rev, 2013, 257: 2522–2535CrossRefGoogle Scholar
  34. 34.
    Qiu Z, Ren S, Xie Z. Acc Chem Res, 2011, 44: 299–309CrossRefGoogle Scholar
  35. 35.
    Xie Z, Jin GX. Dalton Trans, 2014, 43: 4924–5133CrossRefGoogle Scholar
  36. 36.
    Estrada J, Lavallo V. Angew Chem Int Ed, 2017, 56: 9906–9909CrossRefGoogle Scholar
  37. 37.
    El-Hellani A, Lavallo V. Angew Chem Int Ed, 2014, 53: 4489–4493CrossRefGoogle Scholar
  38. 38.
    Chu DTW. Med Res Rev, 1999, 19: 497–520CrossRefGoogle Scholar
  39. 39.
    Torres M, Gil S, Parra M. Curr Org Chem, 2005, 9: 1757–1779CrossRefGoogle Scholar
  40. 40.
    Quan Y, Xie Z. J Am Chem Soc, 2014, 136: 15513–15516CrossRefGoogle Scholar
  41. 41.
    Quan Y, Tang C, Xie Z. Chem Sci, 2016, 7: 5838–5845CrossRefGoogle Scholar
  42. 42.
    Quan Y, Xie Z. Angew Chem Int Ed, 2016, 55: 1295–1298CrossRefGoogle Scholar
  43. 43.
    Lyu H, Quan Y, Xie Z. Angew Chem Int Ed, 2016, 55: 11840–11844CrossRefGoogle Scholar
  44. 44.
    Lyu H, Quan Y, Xie Z. J Am Chem Soc, 2016, 138: 12727–12730CrossRefGoogle Scholar
  45. 45.
    Cheng R, Qiu Z, Xie Z. Nat Commun, 2017, 8: 14827CrossRefGoogle Scholar
  46. 46.
    Cheng R, Li B, Wu J, Zhang J, Qiu Z, Tang W, You SL, Tang Y, Xie Z. J Am Chem Soc, 2018, 140: 4508–4511CrossRefGoogle Scholar
  47. 47.
    Quan Y, Lyu H, Xie Z. Chem Commun, 2017, 53: 4818–4821CrossRefGoogle Scholar
  48. 48.
    Lyu H, Quan Y, Xie Z. Chem Eur J, 2017, 23: 14866–14871CrossRefGoogle Scholar
  49. 49.
    Quan Y, Qiu Z, Xie Z. J Am Chem Soc, 2014, 136: 7599–7602CrossRefGoogle Scholar
  50. 50.
    Lyu H, Quan Y, Xie Z. Chem Sci, 2018, 9: 6390–6394CrossRefGoogle Scholar
  51. 51.
    Cao K, Xu TT, Wu J, Jiang L, Yang J. Chem Commun, 2016, 52: 11446–11449CrossRefGoogle Scholar
  52. 52.
    Xu TT, Cao K, Wu J, Zhang CY, Yang J. Inorg Chem, 2018, 57: 2925–2932CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Sun Y, Lin F, Liu J, Duttwyler S. Angew Chem Int Ed, 2016, 55: 15609–15614CrossRefGoogle Scholar
  54. 54.
    Shen Y, Pan Y, Zhang K, Liang X, Liu J, Spingler B, Duttwyler S. Dalton Trans, 2017, 46: 3135–3140CrossRefGoogle Scholar
  55. 55.
    Molinos E, Kociok-Köhn G, Weller AS. Chem Commun, 2005, 43: 3609CrossRefGoogle Scholar
  56. 56.
    Rojo I, Teixidor F, Kivekäs R, Sillanpää R, Viñas C. J Am Chem Soc, 2003, 125: 14720–14721CrossRefGoogle Scholar
  57. 57.
    Zhang X, Zheng H, Li J, Xu F, Zhao J, Yan H. J Am Chem Soc, 2017, 139: 14511–14517CrossRefGoogle Scholar
  58. 58.
    Zhang X, Yan H. Chem Sci, 2018, 9: 3964–3969CrossRefGoogle Scholar
  59. 59.
    Dziedzic RM, Martin JL, Axtell JC, Saleh LMA, Ong TC, Yang YF, Messina MS, Rheingold AL, Houk KN, Spokoyny AM. J Am Chem Soc, 2017, 139: 7729–7732CrossRefGoogle Scholar
  60. 60.
    Eleazer BJ, Smith MD, Popov AA, Peryshkov DV. J Am Chem Soc, 2016, 138: 10531–10538CrossRefGoogle Scholar
  61. 61.
    Yu WB, Cui PF, Gao WX, Jin GX. Coord Chem Rev, 2017, 350: 300–319CrossRefGoogle Scholar
  62. 62.
    Zhang X, Yan H. Coord Chem Rev, 2019, 378: 466–482CrossRefGoogle Scholar
  63. 63.
    Wilczynski R, Sneddon LG. Inorg Chem, 1981, 20: 3955–3962CrossRefGoogle Scholar
  64. 64.
    Davan T, Corcoran EW, Sneddon LG. Organometallics, 1983, 2: 1693–1694CrossRefGoogle Scholar
  65. 65.
    Hewes JD, Kreimendahl CW, Marder TB, Hawthorne MF. J Am Chem Soc, 1984, 106: 5757–5759CrossRefGoogle Scholar
  66. 66.
    Olid D, Núñez R, Viñas C, Teixidor F. Chem Soc Rev, 2013, 42: 3318–3336CrossRefGoogle Scholar
  67. 67.
    Moselage M, Li J, Ackermann L. ACS Catal, 2016, 6: 498–525CrossRefGoogle Scholar
  68. 68.
    Haynes WM. CRC Handbook of Chemicals and Physics, 95th ed. Boca Raton: CRC Press/Taylor and Francis, 2014Google Scholar
  69. 69.
    Irvine GJ, Lesley MJG, Marder TB, Norman NC, Rice CR, Robins EG, Roper WR, Whittell GR, Wright LJ. Chem Rev, 1998, 98: 2685–2722CrossRefGoogle Scholar
  70. 70.
    Braunschweig H, Dewhurst RD, Schneider A. Chem Rev, 2010, 110: 3924–3957CrossRefGoogle Scholar
  71. 71.
    Musaev DG, Morokuma K. J Phys Chem, 1996, 100: 6509–6517CrossRefGoogle Scholar
  72. 72.
    Rablen PR, Hartwig JF, Nolan SP. J Am Chem Soc, 1994, 116: 4121–4122CrossRefGoogle Scholar
  73. 73.
    Tanaka T, Nishiura Y, Araki R, Saido T, Abe R, Aoki S. Eur J Inorg Chem, 2016, 2016: 1819–1834CrossRefGoogle Scholar
  74. 74.
    Cheng Y, Wu Y, Tan G, You J. Angew Chem Int Ed, 2016, 55: 12275–12279CrossRefGoogle Scholar
  75. 75.
    King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J Am Chem Soc, 2010, 132: 12068–12073CrossRefGoogle Scholar
  76. 76.
    Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Chem Sci, 2010, 1: 326–330CrossRefGoogle Scholar
  77. 77.
    Casitas A, Ribas X. Chem Sci, 2013, 4: 2301–2318CrossRefGoogle Scholar
  78. 78.
    Zhang H, Yao B, Zhao L, Wang DX, Xu BQ, Wang MX. J Am Chem Soc, 2014, 136: 6326–6332CrossRefGoogle Scholar
  79. 79.
    Zhang Q, Liu Y, Wang T, Zhang X, Long C, Wu YD, Wang MX. J Am Chem Soc, 2018, 140: 5579–5587CrossRefGoogle Scholar
  80. 80.
    Wang Z, Ni J, Kuninobu Y, Kanai M. Angew Chem Int Ed, 2014, 53: 3496–3499CrossRefGoogle Scholar
  81. 81.
    Tran LD, Roane J, Daugulis O. Angew Chem Int Ed, 2013, 52: 6043–6046CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong KongShatin, N. T.Hong KongChina

Personalised recommendations