Advertisement

Science China Chemistry

, Volume 62, Issue 3, pp 331–335 | Cite as

1D silver cluster-assembled materials act as a platform for selectively erasable photoluminescent switch of acetonitrile

  • Ya-Hui Li
  • Ren-Wu Huang
  • Peng Luo
  • Man Cao
  • Hong Xu
  • Shuang-Quan ZangEmail author
  • Thomas C. W. Mak
Communications
  • 57 Downloads

Abstract

A new 1D silver cluster-assembled complex Ag10bpy-CH3CN exhibiting intense photoluminescence was reported. Upon the loss of coordinated acetonitrile, Ag10bpy-CH3CN form Ag10bpy with Ag10S6 cores slightly distorted, being accompanied with photoluminescence quenching. Inverse process can be realized by treating Ag10bpy with acetonitrile and shows a selectively erasable photoluminescent switch.

Keywords

silver cluster photoluminescence switch structure transformation acetonitrile response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21671175), the Program for Science & Technology Innovation Talents in Universities of Henan Province (164100510005), the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (19IRTSTHN022) and Zhengzhou University.

Supplementary material

11426_2018_9387_MOESM1_ESM.pdf (1.5 mb)
1D Silver Cluster-Assembled Materials Act as a Platform for Selectively Erasable Photoluminescent Switch of Acetonitrile
11426_2018_9387_MOESM2_ESM.avi (9.3 mb)
Supplementary material, approximately 9543 KB.

References

  1. 1.
    Shen J, Wang Z, Sun D, Xia C, Yuan S, Sun P, Xin X. ACS Appl Mater Interfaces, 2018, 10: 3955–3963CrossRefGoogle Scholar
  2. 2.
    Wang JH, Li M, Li D. Chem Sci, 2013, 4: 1793–1801CrossRefGoogle Scholar
  3. 3.
    Chen WY, Huang CC, Chen LY, Chang HT. Nanoscale, 2014, 6: 11078–11083CrossRefGoogle Scholar
  4. 4.
    Yuan X, Luo Z, Yu Y, Yao Q, Xie J. Chem Asian J, 2013, 8: 858–871CrossRefGoogle Scholar
  5. 5.
    Yuan P, Ma R, Xu Q. Sci China Chem, 2016, 59: 78–82CrossRefGoogle Scholar
  6. 6.
    Grandjean D, Coutiño-Gonzalez E, Cuong NT, Fron E, Baekelant W, Aghakhani S, Schlexer P, D’Acapito F, Banerjee D, Roeffaers MBJ, Nguyen MT, Hofkens J, Lievens P. Science, 2018, 361: 686–690CrossRefGoogle Scholar
  7. 7.
    Jin R, Zeng C, Zhou M, Chen Y. Chem Rev, 2016, 116: 10346–10413CrossRefGoogle Scholar
  8. 8.
    Liu H, Song CY, Huang RW, Zhang Y, Xu H, Li MJ, Zang SQ, Gao GG. Angew Chem Int Ed, 2016, 55: 3699–3703CrossRefGoogle Scholar
  9. 9.
    Bootharaju MS, Kozlov SM, Cao Z, Shkurenko A, El-Zohry AM, Mohammed OF, Eddaoudi M, Bakr OM, Cavallo L, Basset JM. Chem Mater, 2018, 30: 2719–2725CrossRefGoogle Scholar
  10. 10.
    Huang RW, Wei YS, Dong XY, Wu XH, Du CX, Zang SQ, Mak TCW. Nat Chem, 2017, 9: 689–697CrossRefGoogle Scholar
  11. 11.
    Zheng K, Setyawati MI, Leong DT, Xie J. Coordin Chem Rev, 2018, 357: 1–17CrossRefGoogle Scholar
  12. 12.
    Wang ZY, Wang MQ, Li YL, Luo P, Jia TT, Huang RW, Zang SQ, Mak TCW. J Am Chem Soc, 2018, 140: 1069–1076CrossRefGoogle Scholar
  13. 13.
    Li S, Wang ZY, Gao GG, Li B, Luo B, Kong YJ, Liu H, Zang SQ. Angew Chem Int Ed, 2018, 57: 1–6CrossRefGoogle Scholar
  14. 14.
    Jin S, Liu W, Hu D, Zou X, Kang X, Du W, Chen S, Wei S, Wang S, Zhu M. Chem Eur J, 2018, 24: 3712–3715CrossRefGoogle Scholar
  15. 15.
    Qin X, Dong Y, Wang M, Zhu Z, Li M, Chen X, Yang D, Shao Y. Sci China Chem, 2018, 61: 476–482CrossRefGoogle Scholar
  16. 16.
    Zhou M, Lei Z, Guo Q, Wang QM, Xia A. J Phys Chem C, 2015, 119: 14980–14988CrossRefGoogle Scholar
  17. 17.
    Hau FKW, Lee TKM, Cheng ECC, Au VKM, Yam VWW. Proc Natl Acad Sci USA, 2014, 111: 15900–15905CrossRefGoogle Scholar
  18. 18.
    Liu XY, Yang Y, Lei Z, Guan ZJ, Wang QM. Chem Commun, 2016, 52: 8022–8025CrossRefGoogle Scholar
  19. 19.
    Dong XY, Huang HL, Wang JY, Li HY, Zang SQ. Chem Mater, 2018, 30: 2160–2167CrossRefGoogle Scholar
  20. 20.
    Huang RW, Dong XY, Yan BJ, Du XS, Wei DH, Zang SQ, Mak TCW. Angew Chem Int Ed, 2018, 57: 8560–8566CrossRefGoogle Scholar
  21. 21.
    Du XS, Yan BJ, Wang JY, Xi XJ, Wang ZY, Zang SQ. Chem Commun, 2018, 54: 5361–5364CrossRefGoogle Scholar
  22. 22.
    Pei XL, Yang Y, Lei Z, Wang QM. J Am Chem Soc, 2013, 135: 6435–6437CrossRefGoogle Scholar
  23. 23.
    Mulliken RS. J Am Chem Soc, 1950, 72: 600–608CrossRefGoogle Scholar
  24. 24.
    Mulliken RS. J Am Chem Soc, 1952, 74: 811–824CrossRefGoogle Scholar
  25. 25.
    Goh JQ, Malola S, Häkkinen H, Akola J. J Phys Chem C, 2015, 119: 1583–1590CrossRefGoogle Scholar
  26. 26.
    Xu QQ, Dong XY, Huang RW, Li B, Zang SQ, Mak TCW. Nanoscale, 2015, 7: 1650–1654CrossRefGoogle Scholar
  27. 27.
    Lei Z, Pei XL, Jiang ZG, Wang QM. Angew Chem Int Ed, 2014, 53: 12771–12775CrossRefGoogle Scholar
  28. 28.
    Wang Z, Su HF, Wang XP, Zhao QQ, Tung CH, Sun D, Zheng LS. Chem Eur J, 2018, 24: 1640–1650CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ya-Hui Li
    • 1
  • Ren-Wu Huang
    • 1
  • Peng Luo
    • 1
  • Man Cao
    • 1
  • Hong Xu
    • 1
  • Shuang-Quan Zang
    • 1
    Email author
  • Thomas C. W. Mak
    • 1
    • 2
  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Department of ChemistryThe Chinese University of Hong KongShatin, New Territories, Hong Kong SARChina

Personalised recommendations