Science China Chemistry

, Volume 62, Issue 3, pp 355–362 | Cite as

Aggregation-amplified circularly polarized luminescence from axial chiral boron difluoride complexes

  • Zhiyong Jiang
  • Xiaoqing WangEmail author
  • Jianping Ma
  • Zhipeng LiuEmail author


The development of small organic molecules with intense and switchable circularly polarized luminescence (CPL) is currently attracting great interest due to their promising applications in chiroptical devices and sensors. In this paper, CPL-active BF2-bridged azaanthracene dimers (BA1 and BA2) were facilely synthesized by incorporating boron difluoride unit to the binaphthalene. BA1 and BA2 show moderate CPL in diluted solutions, however, BA2 exhibited aggregation-amplified red CPL with large dissymmetry factor up to 1.6×10−2. Moreover, acid-/base-triggered CPL switch off/on were also realized via disaggregation/aggregation of BA2 in tetrahydrofuran (THF)/water binary solvents.


aggregation-induced emission bodipy circularly polarized luminescence dyes and pigments switch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21501085) and Key University Science Research Project of Jiangsu Province (17KJA150004). We are grateful to the High Performance Computing Center of Nanjing Tech University supporting the computational resources.

Supplementary material

11426_2018_9385_MOESM1_ESM.pdf (3.2 mb)
Aggregation-amplified circularly polarized luminescence from axial chiral boron difluoride complexes


  1. 1.
    Longhi G, Castiglioni E, Koshoubu J, Mazzeo G, Abbate S. Chirality, 2016, 28: 696–707CrossRefGoogle Scholar
  2. 2.
    Riehl JP, Richardson FS. Chem Rev, 1986, 86: 1–16CrossRefGoogle Scholar
  3. 3.
    Chen SH, Katsis D, Schmid AW, Mastrangelo JC, Tsutsui T, Blanton TN. Nature, 1999, 397: 506–508CrossRefGoogle Scholar
  4. 4.
    Li M, Li SH, Zhang D, Cai M, Duan L, Fung MK, Chen CF. Angew Chem Int Ed, 2018, 57: 2889–2893CrossRefGoogle Scholar
  5. 5.
    Brandt JR, Wang X, Yang Y, Campbell AJ, Fuchter MJ. J Am Chem Soc, 2016, 138: 9743–9746CrossRefGoogle Scholar
  6. 6.
    Peeters E, Christiaans MPT, Janssen RAJ, Schoo HFM, Dekkers HPJM, Meijer EW. J Am Chem Soc, 1997, 119: 9909–9910CrossRefGoogle Scholar
  7. 7.
    Feuillastre S, Pauton M, Gao L, Desmarchelier A, Riives AJ, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G. J Am Chem Soc, 2016, 138: 3990–3993CrossRefGoogle Scholar
  8. 8.
    Furumi S. Chem Record, 2010, 58: 394–408Google Scholar
  9. 9.
    Jiménez J, Cerdán L, Moreno F, Maroto BL, García-Moreno I, Lunkley JL, Muller G, de la Moya S. J Phys Chem C, 2017, 121: 5287–5292CrossRefGoogle Scholar
  10. 10.
    Maeda H, Bando Y, Shimomura K, Yamada I, Naito M, Nobusawa K, Tsumatori H, Kawai T. J Am Chem Soc, 2011, 133: 9266–9269CrossRefGoogle Scholar
  11. 11.
    Carr R, Evans NH, Parker D. Chem Soc Rev, 2012, 41: 7673–7686CrossRefGoogle Scholar
  12. 12.
    Yuasa J, Ohno T, Miyata K, Tsumatori H, Hasegawa Y, Kawai T. J Am Chem Soc, 2011, 133: 9892–9902CrossRefGoogle Scholar
  13. 13.
    Liu D, Zhou Y, Zhang Y, Li H, Chen P, Sun W, Gao T, Yan P. Inorg Chem, 2018, 57: 8332–8337CrossRefGoogle Scholar
  14. 14.
    Norel L, Rudolph M, Vanthuyne N, Williams JAG, Lescop C, Roussel C, Autschbach J, Crassous J, Réau R. Angew Chem Int Ed, 2010, 49: 99–102CrossRefGoogle Scholar
  15. 15.
    Anger E, Rudolph M, Shen C, Vanthuyne N, Toupet L, Roussel C, Autschbach J, Crassous J, Reau R. J Am Chem Soc, 2011, 133: 3800–3803CrossRefGoogle Scholar
  16. 16.
    Xing P, Li Y, Wang Y, Li PZ, Chen H, Phua SZF, Zhao Y. Angew Chem, 2018, 130: 7900–7905CrossRefGoogle Scholar
  17. 17.
    Meng F, Li Y, Zhang W, Li S, Quan Y, Cheng Y. Polym Chem, 2017, 8: 1555–1561CrossRefGoogle Scholar
  18. 18.
    Yang D, Duan P, Zhang L, Liu M. Nat Commun, 2017, 8: 15727CrossRefGoogle Scholar
  19. 19.
    Aoki R, Toyoda R, Kögel JF, Sakamoto R, Kumar J, Kitagawa Y, Harano K, Kawai T, Nishihara H. J Am Chem Soc, 2017, 139: 16024–16027CrossRefGoogle Scholar
  20. 20.
    Sheng Y, Shen D, Zhang W, Zhang H, Zhu C, Cheng Y. Chem Eur J, 2015, 21: 13196–13200CrossRefGoogle Scholar
  21. 21.
    Otani T, Tsuyuki A, Iwachi T, Someya S, Tateno K, Kawai H, Saito T, Kanyiva KS, Shibata T. Angew Chem Int Ed, 2017, 56: 3906–3910CrossRefGoogle Scholar
  22. 22.
    Dhbaibi K, Favereau L, Srebro-Hooper M, Jean M, Vanthuyne N, Zinna F, Jamoussi B, Di Bari L, Autschbach J, Crassous J. Chem Sci, 2018, 9: 735–742CrossRefGoogle Scholar
  23. 23.
    Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J Am Chem Soc, 2018, 140: 4317–4326CrossRefGoogle Scholar
  24. 24.
    Roose J, Leung ACS, Wang J, Peng Q, Sung HHY, Williams ID, Tang BZ. Chem Sci, 2016, 7: 6106–6114CrossRefGoogle Scholar
  25. 25.
    Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, Vo BG, Muller G, de la Moya S. J Am Chem Soc, 2014, 136: 3346–3349CrossRefGoogle Scholar
  26. 26.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  27. 27.
    Roose J, Tang BZ, Wong KS. Small, 2016, 12: 6495–6512CrossRefGoogle Scholar
  28. 28.
    Heffern MC, Matosziuk LM, Meade TJ. Chem Rev, 2014, 114: 4496–4539CrossRefGoogle Scholar
  29. 29.
    Lu H, Mack J, Yang Y, Shen Z. Chem Soc Rev, 2014, 43: 4778–4823CrossRefGoogle Scholar
  30. 30.
    Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413–1422CrossRefGoogle Scholar
  31. 31.
    Saikawa M, Daicho M, Nakamura T, Uchida J, Yamamura M, Nabeshima T. Chem Commun, 2016, 52: 4014–4017CrossRefGoogle Scholar
  32. 32.
    Alnoman RB, Rihn S, O’Connor DC, Black FA, Costello B, Waddell PG, Clegg W, Peacock RD, Herrebout W, Knight JG, Hall MJ. Chem Eur J, 2016, 22: 93–96CrossRefGoogle Scholar
  33. 33.
    Gobo Y, Yamamura M, Nakamura T, Nabeshima T. Org Lett, 2016, 18: 2719–2721CrossRefGoogle Scholar
  34. 34.
    Zinna F, Bruhn T, Guido CA, Ahrens J, Bröring M, Di Bari L, Pescitelli G. Chem Eur J, 2016, 22: 16089–16098CrossRefGoogle Scholar
  35. 35.
    Clarke R, Ho KL, Alsimaree AA, Woodford OJ, Waddell PG, Bogaerts J, Herrebout W, Knight JG, Pal R, Penfold TJ, Hall MJ. ChemPhotoChem, 2017, 1: 513–517CrossRefGoogle Scholar
  36. 36.
    Ray C, Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, López-Arbeloa Í, Bañuelos J, Cohovi KD, Lunkley JL, Muller G, de la Moya S. Chem Eur J, 2016, 22: 8805–8808CrossRefGoogle Scholar
  37. 37.
    Zhang S, Wang Y, Meng F, Dai C, Cheng Y, Zhu C. Chem Commun, 2015, 51: 9014–9017CrossRefGoogle Scholar
  38. 38.
    Gartzia-Rivero L, Sánchez-Carnerero EM, Jiménez J, Bañuelos J, Moreno F, Maroto BL, López-Arbeloa I, de la Moya S. Dalton Trans, 2017, 46: 11830–11839CrossRefGoogle Scholar
  39. 39.
    Wu Y, Wang S, Li Z, Shen Z, Lu H. J Mater Chem C, 2016, 4: 4668–4674CrossRefGoogle Scholar
  40. 40.
    Tian D, Qi F, Ma H, Wang X, Pan Y, Chen R, Shen Z, Liu Z, Huang L, Huang W. Nat Commun, 2018, 9: 2688CrossRefGoogle Scholar
  41. 41.
    Wang X, Wu Y, Liu Q, Li Z, Yan H, Ji C, Duan J, Liu Z. Chem Commun, 2015, 51: 784–787CrossRefGoogle Scholar
  42. 42.
    Liu Q, Wang X, Yan H, Wu Y, Li Z, Gong S, Liu P, Liu Z. J Mater Chem C, 2015, 3: 2953–2959CrossRefGoogle Scholar
  43. 43.
    Duan W, Liu Q, Huo Y, Cui J, Gong S, Liu Z. Org Biomol Chem, 2018, 16: 4977–4984CrossRefGoogle Scholar
  44. 44.
    Zhang S, Sheng Y, Wei G, Quan Y, Cheng Y, Zhu C. Polym Chem, 2015, 6: 2416–2422CrossRefGoogle Scholar
  45. 45.
    Frath D, Azizi S, Ulrich G, Retailleau P, Ziessel R. Org Lett, 2011, 13: 3414–3417CrossRefGoogle Scholar
  46. 46.
    Park YS, Grove CI, González-López M, Urgaonkar S, Fettinger JC, Shaw JT. Angew Chem Int Ed, 2011, 50: 3730–3733CrossRefGoogle Scholar
  47. 47.
    Kimoto T, Amako T, Tajima N, Kuroda R, Fujiki M, Imai Y. Asian J Org Chem, 2013, 2: 404–410CrossRefGoogle Scholar
  48. 48.
    Solntsev KM, Bartolo EA, Pan G, Muller G, Bommireddy S, Huppert D, Tolbert LM. Isr J Chem, 2009, 49: 227–233CrossRefGoogle Scholar
  49. 49.
    Gon M, Sawada R, Morisaki Y, Chujo Y. Macromolecules, 2017, 50: 1790–1802CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Flexible Electronics, Institute of Advanced MaterialsNanjing Tech UniversityNanjingChina
  2. 2.Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech UniversityNanjingChina
  3. 3.School of Chemistry & Cheimcal Engineering and Materials ScienceShandong Normal UniversityJi’nanChina

Personalised recommendations