Advertisement

Enhancement strategies of targetability, response and photostability for in vivo bioimaging

  • Kaizhi Gu
  • Wei-Hong ZhuEmail author
  • Xiaojun PengEmail author
Reviews
  • 63 Downloads

Abstract

Analyses of the physiology and pathology of active biochemical species in their native contexts are critical for early diagnosis and therapy. Optical imaging has emerged as one of the promising modalities for noninvasive and real-time visualization of important biomolecules or biological events, and it has witnessed major advances in the field of imaging in vitro and in vivo. In this review, we present a survey of common approaches and tactics for enhanced targetability, response rate, and photostability in bioimaging applications. Recently developed and representative examples are illustrated on the cellular and tissue levels.

Keywords

fluorescent probe bioimaging targetability response rate photostability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China for Science Center Program (21788102), National Key Research and Development Program (2016YFA0200300), Natural Science Foundation of China (21636002), and National Postdoctoral Program for Innovative Talents (BX201700075).

References

  1. 1.
    Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. Nat Rev Clin Oncol, 2011, 8: 344–356CrossRefGoogle Scholar
  2. 2.
    Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Nucl Med Commun, 2012, 33: 349–361CrossRefGoogle Scholar
  3. 3.
    Al-Sukhni E, Milot L, Fruitman M, Beyene J, Victor JC, Schmocker S, Brown G, McLeod R, Kennedy E. Ann Surg Oncol, 2012, 19: 2212–2223CrossRefGoogle Scholar
  4. 4.
    Quigley H, Colloby SJ, O’Brien JT. Int J Geriat Psychiat, 2011, 26: 991–999CrossRefGoogle Scholar
  5. 5.
    Xu Z, Chen X, Kim HN, Yoon J. Chem Soc Rev, 2010, 39: 127–137CrossRefGoogle Scholar
  6. 6.
    Guo Z, Park S, Yoon J, Shin I. Chem Soc Rev, 2014, 43: 16–29CrossRefGoogle Scholar
  7. 7.
    Owens EA, Henary M, El Fakhri G, Choi HS. Acc Chem Res, 2016, 49: 1731–1740CrossRefGoogle Scholar
  8. 8.
    Qian X, Xu Z. Chem Soc Rev, 2015, 44: 4487–4493CrossRefGoogle Scholar
  9. 9.
    Chen S, Wang H, Hong Y, Tang BZ. Mater Horiz, 2016, 3: 283–293CrossRefGoogle Scholar
  10. 10.
    Chan J, Dodani SC, Chang CJ. Nat Chem, 2012, 4: 973–984CrossRefGoogle Scholar
  11. 11.
    Yang Y, Zhao Q, Feng W, Li F. Chem Rev, 2013, 113: 192–270CrossRefGoogle Scholar
  12. 12.
    Sun W, Guo S, Hu C, Fan J, Peng X. Chem Rev, 2016, 116: 7768–7817CrossRefGoogle Scholar
  13. 13.
    Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Chem Soc Rev, 2017, 46: 7105–7123CrossRefGoogle Scholar
  14. 14.
    Li S, Jiang XF, Xu QH. Sci China Chem, 2018, 61: 88–96CrossRefGoogle Scholar
  15. 15.
    Wu X, Zhu W. Chem Soc Rev, 2015, 44: 4179–4184CrossRefGoogle Scholar
  16. 16.
    Luo S, Zhang E, Su Y, Cheng T, Shi C. Biomaterials, 2011, 32: 7127–7138CrossRefGoogle Scholar
  17. 17.
    Zhu H, Fan J, Du J, Peng X. Acc Chem Res, 2016, 49: 2115–2126CrossRefGoogle Scholar
  18. 18.
    Jiang N, Fan J, Xu F, Peng X, Mu H, Wang J, Xiong X. Angew Chem Int Ed, 2015, 54: 2510–2514CrossRefGoogle Scholar
  19. 19.
    Fan J, Han Z, Kang Y, Peng X. Sci Rep, 2016, 6: 19562CrossRefGoogle Scholar
  20. 20.
    Peng X, Wu T, Fan J, Wang J, Zhang S, Song F, Sun S. Angew Chem Int Ed, 2011, 50: 4180–4183CrossRefGoogle Scholar
  21. 21.
    Zhang H, Fan J, Wang J, Zhang S, Dou B, Peng X. J Am Chem Soc, 2013, 135: 11663–11669CrossRefGoogle Scholar
  22. 22.
    Zhang H, Fan J, Dong H, Zhang S, Xu W, Wang J, Gao P, Peng X. J Mater Chem B, 2013, 1: 5450–5455CrossRefGoogle Scholar
  23. 23.
    Jiao Y, Yin J, He H, Peng X, Gao Q, Duan C. J Am Chem Soc, 2018, 140: 5882–5885CrossRefGoogle Scholar
  24. 24.
    Qin W, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ. Adv Funct Mater, 2012, 22: 771–779CrossRefGoogle Scholar
  25. 25.
    Li Y, Shao A, Wang Y, Mei J, Niu D, Gu J, Shi P, Zhu W, Tian H, Shi J. Adv Mater, 2016, 28: 3187–3193CrossRefGoogle Scholar
  26. 26.
    Lee MH, Sessler JL, Kim JS. Acc Chem Res, 2015, 48: 2935–2946CrossRefGoogle Scholar
  27. 27.
    Yang Z, Lee JH, Jeon HM, Han JH, Park N, He Y, Lee H, Hong KS, Kang C, Kim JS. J Am Chem Soc, 2013, 135: 11657–11662CrossRefGoogle Scholar
  28. 28.
    Lee MH, Park N, Yi C, Han JH, Hong JH, Kim KP, Kang DH, Sessler JL, Kang C, Kim JS. J Am Chem Soc, 2014, 136: 14136–14142CrossRefGoogle Scholar
  29. 29.
    Li Y, Sun Y, Li J, Su Q, Yuan W, Dai Y, Han C, Wang Q, Feng W, Li F. J Am Chem Soc, 2015, 137: 6407–6416CrossRefGoogle Scholar
  30. 30.
    Wu X, Shao A, Zhu S, Guo Z, Zhu W. Sci China Chem, 2016, 59: 62–69CrossRefGoogle Scholar
  31. 31.
    Wu X, Sun X, Guo Z, Tang J, Shen Y, James TD, Tian H, Zhu W. J Am Chem Soc, 2014, 136: 3579–3588CrossRefGoogle Scholar
  32. 32.
    Gu K, Xu Y, Li H, Guo Z, Zhu S, Zhu S, Shi P, James TD, Tian H, Zhu WH. J Am Chem Soc, 2016, 138: 5334–5340CrossRefGoogle Scholar
  33. 33.
    Zhao X, Yang CX, Chen LG, Yan XP. Nat Commun, 2017, 8: 14998CrossRefGoogle Scholar
  34. 34.
    Yan C, Guo Z, Shen Y, Chen Y, Tian H, Zhu WH. Chem Sci, 2018, 9: 4959–4969CrossRefGoogle Scholar
  35. 35.
    Mu J, Liu F, Rajab MS, Shi M, Li S, Goh C, Lu L, Xu QH, Liu B, Ng LG, Xing B. Angew Chem Int Ed, 2014, 53: 14357–14362CrossRefGoogle Scholar
  36. 36.
    Liu HW, Li K, Hu XX, Zhu L, Rong Q, Liu Y, Zhang XB, Hasserodt J, Qu FL, Tan W. Angew Chem Int Ed, 2017, 56: 11788–11792CrossRefGoogle Scholar
  37. 37.
    Wang S, Chen L, Jangili P, Sharma A, Li W, Hou JT, Qin C, Yoon J, Kim JS. Coordin Chem Rev, 2018, 374: 36–54CrossRefGoogle Scholar
  38. 38.
    Peng T, Wong NK, Chen X, Chan YK, Ho DHH, Sun Z, Hu JJ, Shen J, El-Nezami H, Yang D. J Am Chem Soc, 2014, 136: 11728–11734CrossRefGoogle Scholar
  39. 39.
    Fan J, Mu H, Zhu H, Wang J, Peng X. Analyst, 2015, 140: 4594–4598CrossRefGoogle Scholar
  40. 40.
    Jin P, Jiao C, Guo Z, He Y, Zhu S, Tian H, Zhu W. Chem Sci, 2014, 5: 4012–4016CrossRefGoogle Scholar
  41. 41.
    Xia WJ, Onyuksel H. Pharm Res, 2000, 17: 612–618CrossRefGoogle Scholar
  42. 42.
    Koley D, Bard AJ. Proc Natl Acad Sci USA, 2010, 107: 16783–16787CrossRefGoogle Scholar
  43. 43.
    Zhao C, Zhang X, Li K, Zhu S, Guo Z, Zhang L, Wang F, Fei Q, Luo S, Shi P, Tian H, Zhu WH. J Am Chem Soc, 2015, 137: 8490–8498CrossRefGoogle Scholar
  44. 44.
    Liu X, Qiao Q, Tian W, Liu W, Chen J, Lang MJ, Xu Z. J Am Chem Soc, 2016, 138: 6960–6963CrossRefGoogle Scholar
  45. 45.
    Shank NI, Pham HH, Waggoner AS, Armitage BA. J Am Chem Soc, 2012, 135: 242–251CrossRefGoogle Scholar
  46. 46.
    Guo Z, Shao A, Zhu WH. J Mater Chem C, 2016, 4: 2640–2646CrossRefGoogle Scholar
  47. 47.
    Shi C, Guo Z, Yan Y, Zhu S, Xie Y, Zhao YS, Zhu W, Tian H. ACS Appl Mater Interfaces, 2013, 5: 192–198CrossRefGoogle Scholar
  48. 48.
    Shao A, Guo Z, Zhu S, Zhu S, Shi P, Tian H, Zhu W. Chem Sci, 2014, 5: 1383–1389CrossRefGoogle Scholar
  49. 49.
    Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Shi P, James TD, Tian H, Zhu WH. Angew Chem Int Ed, 2015, 54: 7275–7280CrossRefGoogle Scholar
  50. 50.
    Wang M, Xu Y, Liu Y, Gu K, Tan J, Shi P, Yang D, Guo Z, Zhu W, Guo X, Cohen Stuart MA. ACS Appl Mater Interfaces, 2018, 10: 25186–25193CrossRefGoogle Scholar
  51. 51.
    Wu X, Chang S, Sun X, Guo Z, Li Y, Tang J, Shen Y, Shi J, Tian H, Zhu W. Chem Sci, 2013, 4: 1221–1228CrossRefGoogle Scholar
  52. 52.
    Yan C, Guo Z, Liu Y, Shi P, Tian H, Zhu WH. Chem Sci, 2018, 9: 6176–6182CrossRefGoogle Scholar
  53. 53.
    Kwok RTK, Leung CWT, Lam JWY, Tang BZ. Chem Soc Rev, 2015, 44: 4228–4238CrossRefGoogle Scholar
  54. 54.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  55. 55.
    Li D, Yu J. Small, 2016, 12: 6478–6494CrossRefGoogle Scholar
  56. 56.
    Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H. Nat Mater, 2016, 15: 235–242CrossRefGoogle Scholar
  57. 57.
    Li B, Lu L, Zhao M, Lei Z, Zhang F. Angew Chem Int Ed, 2018, 57: 7483–7487CrossRefGoogle Scholar
  58. 58.
    Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, Xie Y, Xu C, Zhang F. Nat Commun, 2018, 9: 2898CrossRefGoogle Scholar
  59. 59.
    Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J. J Am Chem Soc, 2013, 135: 4978–4981CrossRefGoogle Scholar
  60. 60.
    Liu J, Yu M, Ning X, Zhou C, Yang S, Zheng J. Angew Chem Int Ed, 2013, 52: 12572–12576CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science & TechnologyShanghaiChina
  2. 2.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina

Personalised recommendations